Смекни!
smekni.com

Биполярные, горизонтальные и амакриновые клетки (стр. 3 из 3)

Эти исследования предвосхитили пионерские работы по исследованию глаза простых беспозвоночных: мечехвоста Limulus и сетчатки лягушек.

Изначальный выбор Куффлером глаза кошки был удачным: у кролика, к примеру, ситуация гораздо более сложная. Ганглиозные клетки сетчатки кролика имеют рецептивные поля, тонко реагирующие на такие сложные элементы, как края светового пятна и определенное направление его движения. Также сложны эти механизмы и у низших позвоночных, таких как лягушки. Можно выявить общую закономерность: чем глупее животное, тем умнее у него сетчатка (Д.А. Бейлор, личное сообщение).

Использование дискретных зрительных стимулов для определения рецептивных полей

Главной особенностью ранних экспериментов Куффлера было использование интактного не рассеченного глаза, нормальная рефракция которого использовалась для стимуляции определенных зон сетчатки. Удобным методом освещения отдельных отделов сетчатки является общая анестезия животного и помещение его перед телевизионным экраном на расстоянии, на котором его глазом осуществляется нормальная рефракция. При этом при появлении на экране монитора отдельных вспышек, светящихся паттернов или созданного компьютером изображения оно хорошо фокусируется на поверхности сетчатки (Рис.6).

Организация рецептивных полей ганглиозных клеток

При регистрации сигналов от одной ганглиозной клетки прежде всего важно найти границы ее рецептивного поля. Характерной особенностью большинства ганглиозных клеток и нейронов зрительной системы является то, что они периодически дают редкие разряды в покое, даже при отсутствии освещения. Соответствующие световые стимулы не обязательно вызывают активизацию ганглиозных клеток, они могут просто модулировать спонтанную импульсацию; при этом ганглиозные клетки отвечают либо увеличением, либо уменьшением частоты сигналов.

Рис. 7. Рецептивные поля ганглиозных клеток сетчаток кошки и обезьяны, сгруппированные в два основных класса: поля с "on" и поля с "off"-центрами. Клетки с "on"-центральными полями наиболее чувствительны к пятнам света, проецирующимся на центральную зону рецептивного поля. Освещение (показано в виде полоски над сигналами) окружающей области вместе с пятном, а также освещение в виде кольца уменьшают или полностью подавляют разряды, появляющиеся вновь при выключении света. Освещение всего рецептивного поля вызывает слабые ответы из-за того, что центр и окружение проявляют антагонистические эффекты вместе с биполярной клеткой. Клетки с "off" центральными полями уменьшают или прекращают посылать сигналы при освещении центральных зон их рецептивных полей и активируются при выключении света. Свет, падающий на окружающие зоны рецептивных полей с "off"-центром вызывает возбуждение нейрона.

На рис.7 показано, что для ганглиозной клетки маленькое пятнышко света 0,2 мм в диаметре, спроецированное в определенную зону рецептивного поля, способно гораздо лучше вызывать возбуждение, чем рассеянный свет. Более того, то же самое пятнышко света может вызывать и противоположные эффекты, в зависимости от его положения в пределах рецептивного поля. Например, одна зона пятна света возбуждает ганглиозную клетку в течение всего времени освещения. Такого типа "on"-ответ может быстро перейти в "off"-ответ при помощи простого смешения пятна вдоль поверхности сетчатки на 1 мм или менее.

Как и в случае биполярных клеток, существуют два основных типа рецептивных полей ганглиозных клеток: имеющие рецептивные поля с "on" - и "off"-центрами. Рецептивные поля обоих типов имеют приблизительно концентрическую форму.

В случае рецептивных полей с "on"-центром свет вызывает наиболее сильный ответ в том случае, если световое пятно полностью заполняет центр, в то время как для наиболее эффективного угнетения импульсации свет должен покрыть всю периферию в виде кольца (случай кольцевидного освещения показан на рис.7). При выключении угнетающего активность кольцевидного освещения ганглиозная клетка отвечает дополнительным "off"-разрядом. Рецептивные поля с "off"-центром имеют противоположное строение: угнетение происходит при освещении центральной зоны. Для обоих типов зон эффекты света на центр и на периферию антагонистичны. Таким образом, если и центр, и периферия одновременно освещаются, эффекты стремятся погасить друг друга

Выводы

Палочки и колбочки способны реагировать на освещение ярким и слабым светом.

Зрительные пигменты плотно упакованы в мембранах палочек и колбочек.

Передача сигнала происходит в несколько этапов, с участием G-белка и иГМФ.

В темноте фоторецепторы деполяризованы и постоянно высвобождают медиатор глутамат.

Свет приводит к закрытию управляемых цГМФ катионных каналов, гиперполяризации и уменьшению высвобождения глутамата.

Два основных класса биполярных клеток реагируют на глутамат, высвобождаемый фоторецепторами.

Η-биполярные клетки деполяризованы в темноте и гиперполяризуются на свету.

D-биполярные клетки гиперполяризованы в темноте и деполяризуются на свету.

Рецептивные поля соответствуют зрительным полям или участкам сетчатки, освещение которых вызывает сигналы в клетках зрительной системы.

Фоторецепторы, горизонтальные клетки и биполяры не способны генерировать потенциал действия.

Ганглиозные и амакриновые клетки генерируют потенциал действия.

Биполярные и ганглиозные клетки имеют концентрические рецептивные поля, с "on" - и "off"-центрами и противоположной по функции периферией.

Ганглиозные клетки плохо отвечают на рассеянный свет.

Большие ганглиозные клетки, известные как magnocellular или М-клетки, имеют большие рецептивные поля и хорошо отвечают на движение.

Малые ганглиозные клетки, называемые parvocellular или Р-клетки, имеют небольшие рецептивные поля и способны воспринимать цвет и тонкие детали

Литература

1. Baylor, D. 1996. How photons start vision. Proc. Nail. Acad. Sci. USA 93: 540-565.

2. Boycott, В., and Wàssle, H. 1999. Parallel processing in the mammalian retina: The Proctor Lecture. invest. Ophihalmol. Vis. Sci.40: 1313-1327.

3. Dowling, J. E. 1987. The Retina: An Approachable Part of the Brain. Harvard University Press,Cambridge, MA.