Смекни!
smekni.com

Биология с основами экологии (стр. 2 из 4)

Отрегулированный круговорот углерода нарушает человек в ходе интенсивной хозяйственной деятельности. За счет сжигания огромного количества ископаемого топлива содержание углекислого газа в атмосфере за прошлое столетие возросло на 25% .

Круговорот азота. Азот - необходимый компонент важнейших органических соединений: белков, нуклеиновых кислот, АТФ и др. Основные его запасы сосредоточены в атмосфере в форме молекулярного азота, недоступного для растений, так как они способны использовать азот только в виде соединений.

Пути поступления азота в почву и водную среду различны. Так, небольшое количество азотистых соединений образуется в атмосфере во время гроз (вместе с дождевыми водами они поступают в водную или почвенную среду), а также выделяется при извержениях вулканов.

К прямой фиксации атмосферного молекулярного азота способны лишь некоторые прокариотические организмы: бактерии и цианобактерии. Значительную роль в обогащении азотистыми соединениями водной среды играют цианобактерии. Они могут развиваться в воде в массовом количестве, вызывая ее «цветение».

Азотсодержащие органические вещества отмерших растений и животных, а также мочевина и мочевая кислота, выделяемые животными и грибами, расщепляются гнилостными (аммонифицирующими) бактериям до аммиака. Основная масса образующегося аммиака окисляется нитрифицирующими бактериями до нитритов и нитратов, после чего вновь используется растениями. Некоторая часть аммиака уходит в атмосферу и вместе с углекислыми и другими газами участвует в создании парникового эффекта.

Различные формы азотистых соединений почвы и водной среды могут восстанавливаться некоторыми видами бактерий до оксидов и молекулярного азота. Этот процесс называется денитрификацией. Результатом его является обеднение почвы и воды соединениями азота и пополнение молекулярным азотом атмосферы.

Процессы нитрификации и денитрификации были сбалансированы вплоть до начала интенсивного использования человеком азотных минеральных удобрений в целях получения больших урожаев сельскохозяйственных растений. В настоящее время из-за использования громадных объемов таких удобрений наблюдается накопление азотистых соединений в почве, растениях, грунтовых водах.

Таким образом, роль живых организмов в круговороте азота является основной.

Круговорот фосфора. Большие запасы фосфора содержат горные породы. При разрушении эти породы отдают фосфор наземным экосистемам, однако часть фосфатов вовлекается в круговорот воды и уносится в море. Вместе с отмершими остатками фосфаты погружаются на дно. Одна часть из них используется, а другая теряется в глубинных отложениях. Таким образом, наблюдается несоответствие между потреблением фосфора и его возращением в круговорот.

Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. Свободный кислород поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами, и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т. д. основная доля кислорода продуцируется растениями суши - почти ¾, остальная часть - фотосинтезирующими организмами Мирового океана. Скорость круговорота - около 2 тыс. лет На промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

2 Деструкционные блоки в экосистемах

Одна из важнейших биогеохимических функций на Земле - деструкционная. Она заключается в разложении создаваемой биологической продукции и возвращении биогенных элементов в окружающую среду. В осуществление этого процесса включено огромное разнообразие живых организмов. Многие органические соединения (целлюлоза, лигнин и др.) обладают высокой прочностью и устойчивостью, они не разрушаются в природе в отсутствие редуцентов. На планете постоянно идет гигантская работа по минерализации созданного органического вещества. Параллельно протекает процесс гумификации: часть промежуточных продуктов распада в результате деятельности разных групп организмов вступает в новый синтез, образуя гумус - сложный комплекс веществ, богатых энергией. Гумус является основой почвенного плодородия. Он разлагается определенными микроорганизмами очень медленно и постепенно, обеспечивая постоянство и надежность в снабжении растений биогенными элементами.

Продукты минерализации органических веществ, растворяясь в природных водах, многократно усиливают их химическую активность в разрушении горных пород.

Стабильность биосферы основывается на биогеохимических круговоротах веществ. Глобальный биогеохимический круговорот вещества представляет собой систему сложно переплетенных циклов химических элементов. Круговороты планетарного масштаба создаются из бесчисленных циклических перемещений атомов в процессе жизнедеятельности организмов в отдельных экосистемах и тех перемещений, которые вызываются причинами геологического и ландшафтного характера: поверхностный и подземный сток, ветровая эрозия, вулканизм, горообразование, движение морского дна и т.п. Различают малые и большие, т.е. локальные и общепланетарные, круговороты.

Биологические круговороты характеризует неполная замкнутость. Часть химических элементов и их соединений выпадает из общей циркуляции и скапливается вне живых организмов. Так постепенно накапливались кислород и азот атмосферы, горючие ископаемые, осадочные породы. Незамкнутость циклов может быть ничтожной, но, помноженная на геологическое время, она приводит к глобальным эффектам, к изменениям состояния и структуры биосферы. Современная биосфера сильно отличается от биосферы прошедших времен, когда, например, господствовали только микроорганизмы или когда сложная жизнь была развита только в океане.

Главным для биосферы является цикл органического углерода. Он определяется первичной продукцией организмов за счет фотосинтеза растений и цианобактерий (частично - за счет хемосинтеза бактерий) и последующей деструкцией созданного органического вещества всеми, как аэробными, так и анаэробными, организмами. Конечный продукт деструкции - углекислый газ, связывающий цикл органического углерода с неорганическим и с циклом кислорода.

Основные запасы углерода находятся в связанном состоянии (в основном в составе карбонатов) в осадочных породах Земли, значительная часть растворена в водах океана, и относительно небольшая - присутствует в составе воздуха. Отношение количеств углерода в литосфере, гидросфере и атмосфере, по уточненным расчетам, составляет 28 570: 57: 1.

Таким образом, в биологическом круговороте участвуют лишь доли процента от общего количества углерода на Земле. Атмосфера и гидросфера представляют собой обменный фонд, откуда углерод черпают зеленые растения. Выделение углерода из недр Земли в составе вулканических газов примерно равно скорости погружения его вглубь литосферы в составе осадочных пород, т.е. большой геологический цикл углерода уравновешен.

Из-за недостаточной скорости деструкционных процессов часть углерода надолго выводится из биологических круговоротов на суше и в океане. Так образуются залежи горючих ископаемых, происходит обогащение органическим углеродом осадочных пород и смыкание большого и малого круговоротов. Временным резервуаром углерода являются тела долго живущих организмов, запасы мертвой органики, еще не успевшей разложиться, и почвенного гумуса. Экосистемы могут оказаться накопителями органического углерода даже при низкой продуктивности, всё определяет отставание скорости разложения от скорости создания органического вещества. К таким экосистемам относятся, например, болота, моховые тундры, таежные леса с большим запасом подстилки.

Суммарная биомасса организмов зависит от количества углерода, участвующего в системе биологического круговорота. Известную регуляторную роль играет растительность, которая способна до некоторых пределов поглощать углекислый газ из воздуха и резервировать углерод в своих телах, увеличивая продуктивность и биомассу. Углекислый газ относится к парниковым, и даже незначительное увеличение его содержания в воздухе может заметно повлиять на средние температуры и климат Земли. Поэтому уменьшение суммарной массы растительности, особенно лесной, при современных масштабах антропогенного уничтожения лесов грозит нарушить тонкое равновесие в цикле органического углерода, связанном с циклами многих других веществ в биосфере.

Кислород - самый распространенный химический элемент на Земле. Содержится он в основном в составе воды и минералов. Свободный молекулярный кислород накапливается в биосфере как побочный продукт фотосинтеза и расходуется при дыхании организмов и на окисление всех недоокисленных веществ на поверхности Земли. Накопление О2 в атмосфере и гидросфере происходит в результате неполной замкнутости цикла углерода. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда О2 в атмосфере.

При прекращении фотосинтеза резерва кислорода, имеющегося в воздушной среде, хватило бы не более чем на 2 тыс. лет. Современное человечество усиленно «работает» на уменьшение запасов свободного кислорода в биосфере - за счет сведения лесов и беспрецедентного связывания по свои масштабам сжигания топлива промышленностью и транспортом. Количество связываемого при этом кислорода достигло уже почти 14 млрд. т в год, что составляет почти тридцатую часть кислорода, поставляемого растительностью, т.е. вполне сопоставимо по масштабам с биосферными процессами.