Смекни!
smekni.com

Деятельность центральной нервной системы (стр. 2 из 7)


2.3 Взаимодействие глии и нейронов

Между нейронами и глиальными клетками существуют сообщающиеся между собой щели размером 15-20 нм, так называемое интерстициальное пространство, занимающее 12-14% общего объема мозга.

Во время потенциала действия концентрация ионов калия в интерстициальном пространстве может возрастать от 3-4 ммоль/л до 10 ммоль/л, что может вызвать значительную деполяризацию нервных клеток. В результате же активного транспорта ионов калия его внеклеточная концентрация может стать ниже нормальной, что вызывает гиперполяризацию нервных клеток.

Глиальные клетки имеют высокую проницаемость для ионов калия. Когда несколько глиальных клеток деполяризуются вследствие местного повышения концентрации ионов калия, между деполяризованными и недеполяризованными клетками возникает ток, создающий вход ионам калия в деполяризованные глиальные клетки, в результате чего внеклеточная концентрация ионов калия уменьшается. Благодаря высокой проницаемости глиальных клеток для ионов калия и электрическим связям между ними глиальные клетки действуют как буфер в случае повышения внеклеточной концентрации калия. Данных об активном поглощении ионов калия путем ионного насоса в глиальных клетках нет, хотя, возможно, они активно поглощают нейромедиаторы в некоторых синапсах, ограничивая таким образом время действия медиатора.


Рис.2

СВОЙСТВА ГЛИАЛЬНЫХ КЛЕТОК

А. Схема относительного расположения нейронов, глии и капилляров, составленная по электронно - микроскопическим данным. Глиальная клетка - астроцит (на рисунке желтая), в которую введен микроэлектрод для регистрации мембранного потенциала, находится между капилляром и нейроном. Все клеточные элементы разделены межклеточными промежутками шириной порядка 15 нм (на схеме относительная ширина щелей увеличена).

Б. Зависимость мембранного потенциала глии (ордината) от концентрации внеклеточного К+ . Средний уровень потенциала покоя составляет -89 мВ. Экспериментальные данные соответсвуют величинам потенциала, рассчитанным по уравнению Нернста, за исключением данных в области концентраций калия ниже 0,3 ммоль/л.

В. Деполяризация глиальных клеток во время активности окружающих нейронов зрительного нерва. Стимулы (с интервалом 1 с) показаны вертикальными стрелками.

Г. Деполяризация глиальных клеток в том же препарате во время серии стимулов длительностью 20 с с частотой 1, 2 и 5 Гц, в последнем случае деполяризация достигала почти 20 мВ. Следует обратить внимание, что на рис. В и Г временной ход деполяризации гораздо медленнее по сравнению с потенциалом действия.

2.4 Синапс

Синапс (греч. synapsis соприкосновение, соединение) — специализированная зона контакта между отростками нервных клеток и другими возбудимыми и невозбудимыми клетками, обеспечивающая передачу информационного сигнала. Морфологически синапс образован контактирующими мембранами двух клеток. Мембрана, принадлежащая отросткам нервных клеток, называется пресинаптической, мембрана клетки, к которой передается сигнал, — постсинаптической.

Схема строения межнейронного синапса:

Рис.3

1 — нервное волокно (аксон); 2 — везикулы или синаптические пузырьки; 3 — синаптическая щель; 4 — рецепторы для медиатора; 5 — постсинаптическая мембрана; 6 —пресинаптическая мембрана; 7 — митохондрия.

В соответствии с принадлежностью постсинаптической мембраны синапсы подразделяют на нейросекреторные, нейромышечные и межнейроннные. Последние в зависимости от места их расположения разделяют на аксодендритические, аксосоматические, аксо-аксональные и дендро-дендритические. Различают аксодендритные синапсы (синапс между концевыми веточками аксона одного нейрона и дендритами другого нейрона) и аксосоматические синапсы (синапс между концевыми веточками аксона одного нейрона и телом другого нейрона).

Рис.4

В зависимости от природы проходящих через синапсы сигналов, синапсы делятся на электрические синапсы (так называемые эфапсы) и химические синапсы. В синапсах с химической передачей возбуждения между пре- и постсинаптической мембранами имеется синаптическая щель, куда выделяется химическое вещество-передатчик — медиатор. Химические синапсы часто обозначают по названию медиатора (например, холинергические, адренергические, серотонинергические и т.п.). В эфапсе пре- и постсинаптические мембраны плотно соприкасаются и возбуждение передается посредством электрического тока. В зависимости от изменения биопотенциала постсинаптической мембраны различают синапсы деполяризующие, или возбуждающие, и гиперполяризующие, или тормозные.

Число синапсов очень велико, что обеспечивает большую площадь для передачи информации. На дендритах и телах отдельных двигательных нейронов спинного мозга находится свыше 1 000 синапсов. Некоторые клетки головного мозга могут иметь до 10 000 синапсов.

2.5 Механизм передачи возбуждения

Механизм передачи возбуждения принципиально одинаков во всех химических синапсах. В нем можно выделить следующие основные этапы: синтез и депонирование медиатора в пресинаптическом нейроне и его окончаниях; высвобождение медиатора из депонирующих везикул и его выход в синаптическую щель; взаимодействие медиатора со специфическими хеморецепторами постсинаптической мембраны с последующей генерацией биоэлектрического потенциала; инактивация выделенного медиатора с помощью ферментов или системы обратного поглощения. Биологически активные вещества, выполняющие функцию медиаторов, делят на несколько групп. К классическим нейромедиаторам относят ацетилхолин,адреналин и норадреналин, дофамин, серотонин, а также аминокислоты глицин и глутаминовую, аспарагиновую и гамма-аминомасляную (ГАМК) кислоты. Отдельно выделяют нейропептиды: энкефалин, соматостатин и др. Медиаторную роль могут выполнять также АТФ, гистамин, пуриновые нуклеотиды. В соответствии с принципом Дейла, каждый отдельный нейрон в своих синаптических окончаниях один и тот же медиатор, поэтому нейроны можно обозначать также по виду медиатора: холинергические, адренергические, ГАМК-эргические, пептидергические. Синтез нейромедиаторов осуществляется как в соме нейрона с последующим аксонным транспортом, так и непосредственно в пресинаптических окончаниях аксона, где медиатор концентрируется в везикулах, или синаптических пузырьках.

В состоянии функционального покоя в пресинаптическом окончании происходит случайный контакт синаптических пузырьков с пресинаптической мембраной и выделение в синаптическую щель порции (кванта) медиатора из отдельной везикулы. Например, установлено, что в С. млекопитающих квант классического медиатора 10×ацетилхолина насчитывает 4210×—44 молекул. Выделившийся в синаптическую щель медиатор взаимодействует с хеморецепторами постсинаптической мембраны и приводит к возникновению миниатюрного постсинаптического потенциала. Приходящий к пресинаптическому окончанию потенциал действия в несколько раз увеличивает количество выделяемого в синаптическую щель медиатора. Взаимосвязь между потенциалом действия пресинаптической мембраны и процессом выделения медиатора из везикул в синаптическую щель обеспечивается ионами Са++. Выделяющийся в синаптическую щель медиатор взаимодействует с различными хеморецептивными участками на постсинаптической мембране. Роль мембранных, или клеточных, рецепторов играют белковые молекулы, обладающие способностью «узнавать» специфические для них вещества и вступать с ними в реакцию. В этом процессе большое значение придается системе аденилатциклаза-циклический АМФ. Предполагается, что взаимодействие медиатора с рецепторным участком аденилатциклазы приводит к образованию циклического АМФ с последующим повышением активности протеинкиназ цитоплазмы и ядра клетки. Вследствие этого интенсифицируется фосфорилирование белков, белковые молекулы подвергаются конформационным изменениям и происходит активация специальных ионных каналов мембраны. При увеличении проницаемости постсинаптической мембраны для ионов натрия, калия и хлора возникает ее деполяризация, регистрируется возбуждающий постсинаптический потенциал (ВПСП). При увеличении проницаемости лишь для ионов калия и хлора мембрана гиперполяризуется и регистрируется тормозный постсинаптический потенциал (ТПСП). ВПСП могут суммироваться, и при достижении величины деполяризации мембраны критического уровня генерируется потенциал действия. ТПСП тормозит генерацию потенциала действия, уменьшая суммарную величину ВПСП.

3. Строение и функции спинного мозга

Спинной мозг иннервирует скелетную мускулатуру (кроме мышц головы) и внутренние органы. Афферентными (чувствительными) путями спинной мозг связан с рецепторами, а эффернтными – со скелетной мускулатурой и со всеми внутренними органами. Основные функции спинного мозга:

1.рефлекторная (принимает участие в двигательных реакциях)

- здесь располагаются центры безусловных рефлексов (коленный рефлекс);

- вегетативные центры рефлексов мочеиспускания, дефекации, рефлекторная деятельность желудка.