Смекни!
smekni.com

Эволюция Вселенной 5 (стр. 3 из 4)

Впрочем, черные дыры не останутся без работы. Имея на то достаточно времени, черные дыры поглотят огромное количество вещества вселенной.

Если теория Хокинга верна, то черные дыры будут продолжать испускать излучение, но черным дырам (с массой равной массе Солнца) потребуется очень длительное время, прежде чем это заметно изменит что-то. Фоновое излучение остынет гораздо раньше, чем черные дыры начнут излучать больше, чем они будут поглощать из этого фонового излучения. Такой момент настанет тогда, когда возраст Вселенной станет примерно в десять миллионов раз больше предполагаемого на сегодня Должно пройти около 10 66 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения.

Дж. Берроу из Оксфордского университета и Ф. Типлер из Калифорнийского университета в своих работах нарисовали картину отдаленного будущего неограниченно расширяющейся Вселенной. Даже внутри старой нейтронной звезды сохраняется еще достаточно энергии Чтобы время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания. Предполагается, что в результате этого через достаточно продолжительное время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц. По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение и общее расширение Вселенной как целого. За определенное конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадии еуществующей материи окажутся не разлетающиеся холодные темные тела и черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.

Второе начало термодинамики показывает, что конец эволюции Вселенной наступит, когда выровняется температура ее вещества. Так как тепло передастся от более теплых тел к более холодным, различие их температур со временем сглаживается, совершение дальнейшей работы становится невозможным. Эта мысль о «тепловой смерти» Вселенной была высказана еще в 1854 г. Г. Гельмгодьдем (1821-1894) Интересно, что наше современное представление о неограниченно расширяющейся Вселенной вместе с концепцией квантового излучения черных дыр, которая основана на аналогии между гравитацией и термодинамикой, привели к тем же выводам, что сделал Гельмгольц.Мы не можем знать точно, каков будет исход противоборства расширения селенной и гравитационного притяжения ее вещества. Если победит тяготение, то Вселенная когда-нибудь склапсирует в процессе Большого сжатия, которое может оказался концом ее существования, либо прелюдией к новому расширению. Если же силы тяготения проиграют «сражение», то расширение будет продолжаться неограниченно долго, но тяготение будет продолжать играть существенную роль в определении окончательного состояния вещества. Вещество может превратиться в безбрежное море однородного излучения, либо продолжится рассеивание темных холодных масс. В неясном далеком будущем прошедшая эпоха звездной активности может оказаться лишь кратчайшим мгновением в бесконечной жизни Вселенной.


Модели будущего вселенной

Каково же будущее Вселенной? Многие выдающиеся ученые ХХ века неоднократно задавались этим вопросом.

В 1917г. А. Эйнштейн выступил с гипотезой о конечной, но безграничной Вселенной. Суть данной гипотезы была в следующем: предположим, что вещество, составляющее планеты, звез­ды и звездные системы, равномерно рассеяно по всему миро­вому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех на­правлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называе­мой критической плотности. Если все эти требования соблю­дены, мировое пространство, как это доказал Эйнштейн, замк­нуто и представляет собой четырехмерную сферу. Объем та­кой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе возможно облететь всю замкнутую Вселенную, двигаясь все время в од­ном и том же направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная по Эйнштейну, содержит хотя и большое, но все-таки конечное число звезд и звездных систем, а поэтому к ней фотометрический и гравита­ционный парадоксы просто неприменимы. В то же время при­зрак тепловой смерти тяготеет и над Вселенной Эйнштейна - такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Пять лет спустя, в 1922 г., советский физик Александр Фридман на основании строгих расчетов показал, что Вселен­ная Эйнштейна никак не может быть стационарной, неизмен­ной, как это считал Эйнштейн. Вселенная непременно должна расширяться, причем речь идет о расширении самого про­странства, то есть об увеличении всех расстояний мира. Все­ленная Фридмана напоминала раздувающийся мыльный пу­зырь, у которого и радиус, и площадь поверхности непрерыв­но увеличиваются.

Идея Фридмана поначалу показалась Эйнштейну слишком смелой и необоснованной. Он даже заподозрил ошибку в вы­числениях. Но, ознакомившись с ними, он публично признал, что мы живем в расширяющейся Вселенной.

Из расчетов Фридмана вытекали три возможных следствия:

Вселенная и ее пространство расширяются с течением времени; Вселенная сжимается; во Вселенной чередуются через большие промежутки времени циклы сжатия и расширения.

Доказательства в пользу модели расширяющейся Вселен­ной были получены в 1926 г., когда американский астроном Э. Хаббл открыл при исследовании спектров далеких галактик (существование которых было доказано в 1923 г. тем же Хабблом) красное смещение спектральных линий (смещение линий к красному концу спектра), что было истолковано как следст­вие эффекта Доплера (изменение частоты колебаний или дли­ны волн из-за движения источника излучения и наблюдателя по отношению друг к другу) - удаление этих галактик друг от друга со скоростью, которая возрастает с расстоянием. По по­следним измерениям, это увеличение скорости расширения со­ставляет примерно 55 км/с на каждый миллион парсек. После этого открытия вывод Фридмана о нестационарности Вселен­ной получил подтверждение и в космологии утвердилась мо­дель расширяющейся Вселенной.

Наблюдаемое нами разбегание галактик есть следствие расширения всего пространства замкнутой конечной Вселен­ной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстоя­ния между пылинками на поверхности раздувающего­ся мыльного пузыря. Каждую из таких пылинок, как и каж­дую из галактик, можно с полным правом считать центром расширения.

Дальнейшее развитие модель расширяющейся Вселенной получила в послевоенные годы и особенно в последние десяти­летия благодаря исследованиям известных отечественных кос­мологов Зельдовича и Новикова. Уточнены величины, харак­теризующие скорость расширения Вселенной, рассмотрены различные варианты моделей Вселенной в зависимости от средней плотности вещества в мировом пространстве, доста­точно подробно намечен ход эволюции Вселенной от момента начала ее расширения.

Какое же будущее ждет нашу Вселенную? Мы уже упоми­нали, что расчеты Фридмана допускали три варианта развития событий. По какому из них идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энер­гии разлетающегося вещества. Это отношение можно свести к отношению плотности вещества во Вселенной к критической плотности вещества, которую мы уже упоминали.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик и расшире­ние Вселенной носит необратимый характер.

Этот вариант динамичной модели Вселенной называют «открытой Вселен­ной».

Если же преобладает гравитационное взаимодействие, чему соответствует условие то темп расширения со временем замедлится до полной остановки, после чего начнет­ся сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно боль­шой плотностью), затем произойдет новый взрыв.

Для наблюдателя сигналом перехода от расширения к сжатию станет смена красного смещения линий химических элементов в спектрах удаленных галактик на фио­летовое смещение. Такой вариант модели назван «закрытой Вселенной».

В случае, когда силы гравитации точно равны ки­нетическим силам, то есть когда расширение не пре­кратится, но его скорость со временем будет стремиться к ну­лю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным.

Теоретически возможна и пуль­сация Вселенной.

Возникает естественный вопрос: какой из трех вариантов реализуется в нашей Вселенной? Ответ на него остается за наблюдательной астрономией, которая должна оценить со­временную среднюю плотность вещества во Вселенной и уточнить значение постоянной Хаббла (скорость расширения галактик). Пока надежные оценки этих величин отсутствуют. На основании современных данных создается впечатление, что средняя плотность вещества во Вселенной близка к кри­тическому значению, она либо немного больше, либо немно­го меньше. Но от этого «немного» зависит будущее Вселен­ной, правда, весьма отдаленное. Постоянная Хаббла поз­воляет оценить время, в течение которого продолжается про­цесс расширения Вселенной. Получается, что оно не мень­ше 10 млрд. и не более 19 млрд. лет. Наиболее вероятным вре­менем существования расширяющейся Вселенной считают 15 млрд. лет.