регистрация / вход

Биология с основами экологии Пехов

Уважаемый читатель! Вы, держите в руках один из учебников нового поколения по биологии для студентов высших учебных заведений, обучающихся по естественнонаучным направлениям и специальностям. Учебник написан известным специалистом в области биологии и прошел сложный и длительный путь конкурсного отбора на Всероссийском конкурсе учебников нового поколения по общим фундаментальным естественнонаучным дисциплинам.

Уважаемый читатель!

Вы, держите в руках один из учебников нового поколения по биологии для студентов высших учебных заведений, обучающихся по естественнонаучным направлениям и специальностям. Учебник написан известным специалистом в области биологии и прошел сложный и длительный путь конкурсного отбора на Всероссийском конкурсе учебников нового поколения по общим фундаментальным естественнонаучным дисциплинам. Этот конкурс был инициирован. Госкомвузом (в дальнейшем — Минобразованием России) впервые в истории российской высшей школы в связи с реформированием структуры, и содержания программ высшего образования и проведен в 1995-1998 годах на базе Российского университета дружбы, народов.

В конкурсе по одиннадцати номинациям приняли участие свыше трехсот пятидесяти авторских коллективов, чьи разработки более всего соответствовали как новым учебным программам, так и государственным образовательным стандартам по каждой дисциплине.

Конкурсная комиссия выражает надежду, что данный учебник внесет вклад в дело дальнейшего совершенствования российского высшего профессионального образования, и желает всем читателям — студентам и преподавателям — больших творческих успехов.

Первый заместитель Министра

общем и профессиональном образования России,

академик российской академии, образования,

председатель конкурсной комиссии

профессор В. Д. ШАДРИКОВ

ПОСВЯЩАЕТСЯ

ПАМЯТИ МАТЕРИ

ПЕХОВОЙ АННЫ ИЛЬИНИЧНЫ.

ПАРТИЗАНКИ

ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЫ.

ОТДАВШЕЙ ЖИЗНЬ ЗА НАШУ СОВЕТСКУЮ РОДИНУ

В 1942 ГОДУ

А. П. ПЕХОВ

БИОЛОГИЯ

С ОСНОВАМИ

ЭКОЛОГИИ

Рекомендовано Министерством образования

Российской Федерации в качестве учебника

для студентов высших учебных заведений,

обучающихся по естественнонаучным

специальностям и направлениям

Санкт-Петербург«

2000

ББК 28

П31

Пехов А. П.

П 31 Биология с основами экологии. Серия «Учебники для вузов. Специальная литература» — СПб.: Издательство «Лань», 2000. — 672 с.

ISBN 5-8114-0219-8

В учебнике освещены основные разделы современной биологии с основами экологии. Он состоит из шести разделов. В разделе I приведены сведения о биоразнообразии, в разделе II — о сущности жизни, свойствах и организации живого, о структуре и свойствах клеток, о росте индивидуальном развитии организмов, в разделе III — о наследственности и изменчивости организмов, о генетическом материале, о действии генов, и о генетике человека, в разделе IV — об эволюции органического мира, включая происхождение человека, в разделе V — об основах экологии, включая экологию человека, в разделе VI — о генетической инженерии, биотехнологии, и об их экологических проблемах, а также о методологических проблемах биологии и экологии. В заключении к учебнику даны краткие обобщения рассмотренных современных данных биологии и экологии.

Учебник предназначен для студентов естественнонаучных, сельскохозяйственных, физкультурных и других направлений бакалавриата. Он также полезен для студентов-медиков, а также студентов, изучающих ветеринарную медицину.

Рисунков — 231. Таблиц — 45.

ББК 28

Рецензенты:

проф. В. А. Голиченков, проф. Ю. Л. Гужов

Оформление обложки С. Л. Шапиро, А. А. Олексенко

Охраняется законом РФ об авторском праве.

Воспроизведение всей книги или любой ее части

запрещается без письменного разрешения издателя.

Любые попытки нарушения закона будут

преследоваться в судебном порядке.

© Издательство «Лань», 2000

© А. П. Пехов, 2000

© Издательство «Лань»,

художественное оформление, 2000

ОТ АВТОРА

БИОЛОГИЯ — это наука о живом. Долгое время она развивалась как наука описательная, — сейчас ее называют традиционной биологией.

Но с тех пор как в биологию вошли методы физики и химии, ее стали называть новой биологией, или ^'изико-химическои, т. е. молекулярной биологией. В последние десятилетия в этой науке произошли поистине революционные изменения, благодаря чему она выдвинулась на передний план естествознания, начала активно способствовать и, частично, задавать направление научно-техническому прогрессу, идущему вперед семимильными шагами.

Современные данные о живом имеют, прежде всего, гигантское познавательное значение, ибо вносят выдающийся вклад в создание научной картины мира. Однако, непрерывно осуществляя познавательную функцию, биология через генетическую инженерию стремительно вовлеклась в материальное производство, стала одной из производительных сил. С другой стороны, одна из биологических наук, а именно, экология вышла за рамки биологии, стала междисциплинарной наукой. Так произошло благодаря тому, что ученые предпринимали громадные усилия (и продолжают это делать), чтобы общество в целом глубоко осознало тот факт, что деятельность человека в окружающей среде влечет за собой не только положительные, но и отрицательные последствия; последние же могут привести к катастрофе — как к локальной (на отдельно взятой территории), так и к глобальной, мировой. И в наше время невозможно изучать биологию, не уделяя внимания экологии и наоборот. Поэтому данный учебник является учебником по биологии с основами экологии. Можно сказать, что биология и экология — это современный комплекс наук о живом, о происхождении, росте, развитии, наследственности и изменчивости организмов, о взаимоотношениях организмов между собой и со средой, о результатах деятельности человека в окружающей среде и воздействии факторов, порожденных этой деятельностью, на организм человека, животных и растений. Следовательно, задача студентов, которые будут пользоваться этим учебником, заключается в усвоении базовых данных современной биологии и экологии, понимании их фундаментального значения и в использовании приобретенных знаний в практической работе.

Учебник написан на основе примерной программы по дисциплине «Биология с основами экологии» и предназначен для естественнонаучных, сельскохозяйственных, физкультурных и некоторых технических направлений бакалавриата. Однако автору при этом хотелось бы отметить несколько очень важных моментов. Один из них сводится к тому, что, руководствуясь этой программой, мы все же стремились отразить в учебнике свое собственное видение биологии, ее основ и тенденций развития, которое складывалось в результате длительного периода научной и преподавательской деятельности в этой области и развивалось под благотворным влиянием непосредственного общения в те или иные годы с корифеями отечественной науки (такими как Н. П. Дубинин, А. А. Баев, мой учитель Н. Н. Жуков-Вережников, А. А. Им-шенецкий, В. М. Кланов, Ю. А. Овчинников, М. А. Пешков, В. Д. Тимаков и др.). Невозможно не отметить и роль моих зарубежных учителей Г. Понтекорво и У. Хейза (Великобритания), под руководством которых автор изучал генетику и ряд проблем общей биологии, а также благотворность общения с другими выдающимися зарубежными учеными (Р. Картис, Д. Кларк Р. Клаус, США; Ш. Ауэрбах, Н. Датта и М. Ричмонд, Великобритания; Т. Митсухаши, Япония).

Учебник предназначен для студентов разных специальностей, и, учитывая это, автор счел необходимым шире представить не только экологическую проблематику, но и возможности, направления и достижения генетической инженерии, которая позволила получить данные, являющиеся критерием ценности наших представлений о живой материи, и, что не менее важно, подняла на новый уровень биотехнологию.

Наконец, еще один важный момент, которым руководствовался автор, связан с тем, что в свете исключительно быстрого и непрерывного прогресса биологических наук эффективность преподавания курса, изложенного в этом учебнике, полностью зависит не только от новизны и актуальности используемых материалов, но и от уровня методики их преподавания. По этой причине автор стремился подготовить учебник, который был бы насыщен новейшими данными и который оставался бы полезным для студентов как можно дольше.

Чтобы студенты могли более подробно познакомиться с интересующими их проблемами, в конце каждой главы приводится список дополнительной литературы, куда, помимо отечественных источников, вошли и новейшие издания на английском языке. Этот язык играет ведущую роль в общении ученых разных стран, и, не ознакомившись с работами зарубежных специалистов, весьма трудно получить полное представление о современном состоянии науки.

Наконец, в каком бы направлении ни развивалась биология, а вместе с ней и экология, научные открытия всегда используются во имя человека и для пользы человека. По этой основополагающей причине мы стремились в этом учебнике, по возможности, быть «близко» к человеку, к его биологии и здоровью.

Со времен Г. Гегеля (1770-1831) известно, что качество всех вещей и явлений определяется мерой. Непрестанно думая об этом, мы учитывали и то, в какой мере этот учебник будет доступен для тех, кому он может быть полезен. Надеемся, что в общем нам удалось изложить столь сложный материал в приемлемой форме. В этом нас убеждает наш опыт преподавания биологии в Российском университете дружбы народов, а также опыт чтения лекций по биологии в ряде зарубежных университетов, в частности, в университетах штатов Алабамы и Аризоны (США), в Хартумском университете (Судан) и университете г. Дакки (Бангладеш), где мы имели возможность работать некоторое время. Именно материалы прочитанных там лекций в значительной мере составили основу данного учебника.

Как всегда, благодарю своих сотрудников (особенно проф. В. П. Щипкову) за то, что они помогли мне найти время написать этот учебник. Я также очень признателен специалистам, ознакомившимся с учебником в рукописи и высказавшим свои замечания, которые оказались чрезвычайно полезными.

Методические рекомендации

Независимо от специальности студентов, в учебном плане курс «Биология с основами экологии» должен быть представлен лекциями и лабораторными занятиями. При этом общие установочные вопросы должны быть вынесены на лекции, тогда как углубленное изучение этих вопросов и частных закономерностей должно проводиться на лабораторных занятиях (путем постановки соответствующих экспериментов) или на семинарских занятиях в процессе обсуждения. Желательно, чтобы изучение этого курса было согласовано по времени с изучением курсов физики и химии, поскольку многие современные биологические понятия сложились на основе идей, методов та. данных этих наук.

В любом вузе по любой научной дисциплине значительная часть времени в подготовке студентов уделяется их самостоятельной работе, основной формой которой является чтение учебника и дополнительной литературы, ее анализ, а также самоконтроль (поиск ответов на вопросы, возникающие в процессе самостоятельной подготовки, лекционных, лабораторных и семинарских занятий).

* * *

Учебник состоит из 5 разделов, которые отражают основную проблематику биологии и экологии, причем материалы по экологии излагаются с учетом того, что экология является, прежде всего, биологической наукой, которая в наше время стала наукой междисциплинарной. В свою очередь, каждый из разделов состоит из нескольких глав, которые разделены на параграфы. Как правило, в каждой главе излагаются данные по одной проблеме.

Крайне необходимо, чтобы студенты очень' хорошо усвоили определения биологических понятий. В тексте учебника, по мере введения новой терминологии, даются определения тех или иных явлений. Тем не менее, в Приложение включен словарь наиболее важных биологических терминов, которые должны быть усвоены студентами «окончательно и бесповоротно». Очень полезно знать, как развивались биологические понятия во времени. Поэтому в Приложении есть перечень наиболее важных дат в развитии биологии и приведены имена ученых, которые своими открытиями обеспечили это развитие.

Особое внимание уделяется углубленному изучению разделов биологии, пониманию перспектив их дальнейшего развития. По этой причине в конце каждой главы приводится список литературы, рекомендуемой для дополнительного чтения. Как говорилось выше, в перечень книг вошли не только отечественные учебные и научные издания, но и работы ученых (наиболее значительные монографии и фундаментальные обзорные статьи), опубликованные за рубежом на английском языке. Они будут полезны не только студентам, особенно на семинарских занятиях и в научных кружках, но и преподавателям в объяснениях студентам дальнейших перспектив биологического познания.

Вопросы, необходимые для самоконтроля, приведены в конце каждой главы. Эти вопросы — «авторские» и сформулированы так, чтобы они наиболее полно отражали материалы учебника и соответствовали учебной программе (какой она представляется автору). Если студент сумеет ответить на них, то это означает, что он усвоил материал главы. Но студенты, равно как и их преподаватели, могут поставить себе и «свои» вопросы.

Также в конце каждой главы, среди вопросов для самоконтроля, приведены задачи, имеющие аналогичное функциональное значение. Но успешное решение задач особо ценно в том плане, что оно позволяет практически использовать усвоенные фундаментальные данные и приблизиться к моделированию изучаемых процессов.

Чтобы облегчить работу с учебником, в Приложение включены также предметный и именной (авторский) указатели. Предметный указатель содержит все основные термины, используемые в учебнике; авторский указатель содержит фамилии ученых, встречающиеся в тексте.

Наконец, в Приложении приведен перечень единиц измерений, используемых в биологических исследованиях, а также названия наиболее важных отечественных и зарубежных научных журналов и других периодических изданий, в которых публикуются экспериментальные и обзорные статьи по биологии и экологии.

Александр ПЕХОВ

профессор,

доктор биологических наук,

заслуженный деятель науки

Российской Федерации,

Академик

Международной Академии Наук

Высшей Школы Российский университет.

дружбы народов

ВВЕДЕНИЕ

«Я расскажу вам откровенно,

как было дело,

не прибавив ничего от себя,

что стоит историку немалого труда».

Ф.М.Вольтер. 1757

Биология (от греч. bios — жизнь, logos — наука) — наука о жизни, об общих закономерностях существования и развития живых существ. Предметом ее изучения являются живые организмы, их строение, функции, развитие, взаимоотношения со средой и происхождение. Подобно физике и химии она относится к естественным наукам, предметом изучения которых является природа.

Биология — одна из старейших естественных наук, хотя термин «биология» для ее обозначения впервые был предложен лишь в 1797 г. немецким профессором анатомии Теодором Рузом (1771-1803), после чего этот термин использовали в 1800 г. профессор Дерптского университета (ныне г. Тарту) К. Бурдах (1776-1847), а в 1802 г. Ж.-Б. Ламарк (1744-1829) и Л. Тревиранус (1779-1864).

Биология — естественная наука. Как и другие науки, она возникла и всегда развивалась в связи с желанием человека познать окружающий его мир, а также в связи с материальными условиями жизни общества, развитием общественного производства, медицины, практическими потребностями людей.

Этапы развития биологии. Самые первые сведения о живых существах человек стал собирать, вероятно, с тех пор, когда он осознал свое отличие от окружающего мира. Уже в литературных памятниках египтян, вавилонян, индийцев и др. содержатся сведения о строении многих растений и животных, о применении этих знаний в медицине и сельском хозяйстве. В XIV в. до н. э. многие клинописные таблички, созданные в Месопотамии, содержали сведения о животных и растениях, о систематизации животных путем разделения их на плотоядных и травоядных, а растений на деревья, овощи, лекарственные травы и т. д. В медицинских сочинениях, созданных в VI—I вв. до н. э. в Индии, содержатся представления о наследственности как причине сходства родителей и детей, а в памятниках «Махабхарата» и «Рамаяна» дано довольно подробное описание ряда особенностей жизни многих животных и растений.

В период рабовладельческого строя возникают ионийская, афинская, александрийская и римская школы в изучении животных и растений.

Ионийская школа возникла в Ионии (VII-IV вв. до н. э.). Не веря в сверхъестественное происхождение жизни, философы этой школы признавали причинность явлений, движение жизни по определенному пути, доступность для изучения «естественного закона» , который, по их утверждению, управляет миром. В частности, Алкмеон (конец VI—начало V в. до н. э.) описал зрительный нерв и развитие куриного эмбриона, признавал мозг в качестве центра ощущений и мышления, а Гиппократ (460-377 гг. до н. э.) дал первое относительно подробное описание строения человека и животных, указал на роль среды и наследственности в возникновении болезней.

Афинская школа сложилась в Афинах. Наиболее выдающийся представитель этой школы Аристотель (384—322 гг. до н. э.) создал четыре биологических трактата, в которых содержались разносторонние сведения о животных. Аристотель подразделял окружающий мир на четыре царства (неодушевленный мир земли, воды и воздуха, мир растений, мир животных и мир человека), между которыми устанавливалась последовательность. В дальнейшем эта последовательность превратилась в «лестницу существ» (XVIII в.). Аристотелю принадлежит, вероятно, и самая первая классификация животных, которых он классифицировал на четвероногих, летающих, пернатых и рыб. Китообразных он объединил с сухопутными животными, но не с рыбами, которых он классифицировал на костных и хрящевых.

Аристотелю были известны основные признаки млекопитающих. Он дал описание наружных и внутренних органов человека, половых различий у животных, способов размножения и образа жизни животных, происхождения пола, наследования отдельных признаков, уродств, многоплодия и т. д. Аристотеля считают основоположником зоологии. Другой представитель этой школы Те-офраст (372-287 гг. до н.э.) оставил сведения о строении и размножении многих растений, о различиях между однодольными и двудольными растениями, ввел в употребление термины — плод, околоплодник, сердцевина. Его считают основоположником ботаники.

Александрийская школа вошла в историю биологии благодаря ученым, занимавшимся в основном изучением анатомии. Герофил (расцвет творчества на 300 годы до н. э.) оставил сведения по сравнительной анатомии человека и животных, впервые указал на различия между артериями и венами, а Эразистрат (250 годы до н. э.) описал полушария головного мозга, мозжечок, извилины головного мозга.

Римская школа не дала самостоятельных разработок в изучении живых организмов, ограничившись коллекционированием сведений, добытых греками. Гай Плиний старший (23-79 гг.) создал энциклопедию «Естественная история» из 37 томов, в которой содержались также и сведения о животных и растениях. Диоско-рид (I век н. э.) оставил описание 600 видов растений, обращая внимание на их целебные свойства. Клавдий Гален (130-200 гг.) широко проводил вскрытия млекопитающих (крупный и мелкий рогатый скот, свиньи, собаки, медведи и др.), первым дал сравнительно-анатомическое описание человека и обезьяны. Он был последним великим биологом древности, оказавшим исключительно большое влияние на дальнейшее развитие анатомии и физиологии.

В средние века господствующей идеологией была религия. Однако научные знания как-то все же продолжали развиваться. Можно сказать, что новых знаний почти не получали. Но биологические знания, основанные на описаниях Аристотеля, Плиния, Галена, поддерживались. В частности знания, добытые греками, были отражены в энциклопедии Альберта Великого (1206—1280).

На Руси сведения о животных и растениях были обобщены в том древнем произведении, которое известно под названием «Поучение Владимира Мономаха» (XI в.).

Выдающийся ученый и мыслитель средних веков Абу-Али ибн Сина (980-1037), известный в Европе под именем Авиценны, развивал взгляды о вечности и несотворенности мира, признавал причинные закономерности в природе. В этот период биология еще не выделилась в самостоятельную науку, не отделилась от искаженных религиозно-философских взглядов на окружающий мир-

Как считают историки науки, начала биологии, как и всего естествознания, связаны с эпохой Возрождения (Ренессанса). В эту эпоху происходит крушение феодального общества, разрушается диктатура церкви. Можно сказать, что естествознание более быстро начинает развиваться со второй половины XV в. С того времени успехи естествознания следуют один за другим. Например, выдающийся деятель эпохи Возрождения Леонардо да Винчи (1452-1519) в то время открыл гомологию органов, охарактеризовал многие растения, описал поведение птиц в полете, открыл щитовидную железу, описал способ соединения костей суставами, деятельность сердца и зрительной функции: глаза, отметил сходство костей человека и животных, Андреас Везалий (1514-1564) создал анатомический труд «Семь книг о строении человеческого тела», заложивший основы научной анатомии, В. Гарвей (1578—1657) открыл кровообращение, а Д. Борелли (1608—1679) описал механизмы движения животных, что заложило научные основы физиологии. С того времени анатомия и физиология развивались вместе в течение многих десятков лет, после чего они разделились на самостоятельные науки, в пределах которых возникли более узкие науки (анатомия животных, анатомия человека, физиология животных и т. д.).

Чрезвычайно быстрое накопление научных данных о живых организмах вело к дифференцировке биологических знаний, к разделению биологии на отдельные науки по объектам и задачам изучения. В XVI-XVII вв. стала стремительно развиваться ботаника. С изобретением микроскопа (начало XVII в.) в пределах ботаники возникла микроскопическая анатомия растений, закладываются основы физиологии растений. С XVI в. стала быстро развиваться и зоология.

Большое влияние на развитие зоологии в последующем оказала система классификации животных, созданная К. Линнеем (1707-1778). Введя четырехчленные таксономические подразделения (класс — отряд — род — вид), К. Линней классифицировал животных на шесть классов (млекопитающие, птицы, амфибии, рыбы, насекомые, черви).

Значительное влияние на биологию XVII-XVIII вв. оказал и немецкий ученый Г. Лейбниц (1646-1716) и швейцарский ученый Ш. Бонна, которые разработали учение о «лестнице существ», основные принципы которой были заимствованы из взглядов античного мира.

В XVIII-XIX вв. трудами К. Ф. Вольфа, К. М. Бэра и других закладываются основы эмбриологии. С этого времени эмбриология развивается в качестве самостоятельной науки. В 1839 г. Т. Шванн (1804-1881) и М. Шлейден (1810-1882) формулируют клеточную теорию, явившуюся важнейшим обобщением знаний о клетке, ставших известными к концу первой трети XIX в.

В 1859 г. Ч. Дарвин (1809-1882) публикует «Происхождение видов». В этом труде была сформулирована теория эволюции.

В первой половине XIX в. возникает бактериология, которая благодаря трудам Л. Пастера, Р. Коха, Д. Листера и И. И. Мечникова в последующем перерастает в микробиологию как самостоятельную науку. К концу XIX в. в качестве самостоятельных наук оформляются паразитология и экология.

В 1865 г. была опубликована работа Г. Менделя (1822-1884) «Опыт над растительными гибридами», в которой было обосновано существование генов и сформулированы закономерности, которые в настоящее время называют законами наследственности. После повторного открытия этих законов в XX в. оформляется в качестве самостоятельной науки генетика.

Еще в первой половине XIX в. возникли идеи об использовании физики и химии для изучения явлений жизни (Г. Деви, Ю. Либих). Реализация этой идеи привела к тому, что в середине XIX в. физиология обособилась от анатомии, причем физико-химическое направление заняло в ней ведущее место. На рубеже XIX-XX вв. сформировалась современная биологическая химия. В первой половине XX в. оформляется в качестве самостоятельной науки биологическая физика.

Важнейшим рубежом в развитии биологии в XX в. стали 40-50-е годы, когда в биологию хлынули идеи и методы физики и химии, а в качестве объектов стали использовать микроорганизмы. В 1944 г. была открыта генетическая роль ДНК, в 1953 г. выяснена ее структура, а в 1961 г. был расшифрован генетический код. С открытием генетической роли ДНК и механизмов синтеза белков из генетики и биохимии произошло вычленение молекулярной биологии и молекулярной генетики, которые в совокупности часто называют физико-химической биологией. Основным предметом изучения молекулярной биологии и генетики стали структура и функции нуклеиновых кислот и белков. Возникновение этих наук означало гигантский шаг в изучении явлений жизни на молекулярном уровне живой материи.

12 апреля 1961 г. впервые в истории человек поднялся в космос. Этим первым космонавтом был гражданин СССР Юрий Алексеевич Гагарин. У нас этот день стал Днем космонавтики, а в мире — Всемирным днем авиации и космонавтики. Но можно сказать, что этот день является также и днем космической биологии, родиной которой по праву является наша страна.

В наше время биология характеризуется исключительно широким перечнем разрабатываемых фундаментальных проблем, начиная с исследований элементарных клеточных структур и реакций, протекающих в клетках, и заканчивая познанием процессов, развернутых и развивающихся на глобальном (биосферном) уровне. В относительно короткие исторические сроки были разработаны принципиально новые методы исследований, вскрыты молекулярные основы строения и активности клеток, установлена генетическая роль нуклеиновых кислот, расшифрован генетический код и сформулирована теория генетической информации, определены (секвеннированы) последовательности азотных оснований многих генов, появились новые обоснования теории эволюции, возникли новые биологические науки. Новейший революционный этап в развитии биологии — это создание методологии генетической инженерии, которая открыла принципиально новые возможности для проникновения в глубь биологических процессов с целью дальнейшей характеристики живой материи и создания научной картины мира. Генетическая инженерия подняла также на новый уровень биотехнологию, сделала ее более эффективной и привлекла к ней значительное общественное внимание, заставив людей более внимательно задуматься о своем бытие. Появление генетической инженерии привело к созданию ряда совершенно новых социальных и этических проблем естественных наук.

Классификация биологических наук. Биология — это комплексная наука, ставшая в наше время такой в результате дифференциации и интеграции разных биологических наук. Самыми старыми биологическими науками являются зоология и ботаника, изучающие животных и растения соответственно.

Процесс дифференциации биологических наук возник давно и начался с разделения зоологии, ботаники и микробиологии на ряд самостоятельных наук. В пределах зоологии в XVIII—XIX вв. в разное время возникли зоология позвоночных и беспозвоночных, а также паразитология, протозоология, гельминтология, энтомология, малакология, ихтиология, герпетология, орнитология, тери-ология, предметом изучения которых являются паразиты и паразитизм, простейшие, гельминты (черви), насекомые, моллюски, рыбы, земноводные и рептилии, птицы (соответственно) и другие науки. В ботанике в самостоятельные науки выделились дендрология (наука о деревьях и кустарниках), птеридология (наука о папоротниках), альгология (наука о водорослях), бриология (наука о мхах), биогеоботаника (наука о распространении растений) и другие науки.

Отдельные биологические науки имеют комплексное значение. Например, комплексной наукой стала генетика, предметом изучения которой являются наследственность и изменчивость организмов.

В наше время комплексной наукой стала экология, изучающая взаимоотношения организмов между собой и со средой.

Как в зоологии, так и в ботанике уже давно в самостоятельные науки выделились систематика, анатомия, физиология, цитология, гистология, эмбриология и другие дисциплины. Микробиология разделилась на бактериологию, вирусологию и иммунологию. Одновременно с дифференциацией шел процесс возникновения и оформления новых наук, которые расчленялись на более узкие науки. Например, генетика, возникнув в качестве самостоятельной науки, разделилась на общую и молекулярную, на генетику растений, животных и микроорганизмов. В то же время возникли генетика пола, генетика поведения, популяцион-ная генетика, эволюционная генетика и т. д. В недрах физиологии возникли сравнительная и эволюционная физиология, эндокринология и другие физиологические науки. В последние годы отмечается тенденция оформления узких наук, получающих название по проблеме (объекту) исследования. Такими науками являются энзимология, мембранология, кариология, плазмидология и другие.

В результате интеграции наук возникли биохимия, биофизика, радиобиология, цитогенетика, космическая биология и другие науки.

Ведущее положение в современном комплексе биологических наук занимает физико-химическая биология, новейшие данные которой вносят существенный вклад в представления о научной картине мира, в дальнейшее обоснование материального единства мира. Продолжая отражать живой мир и человека как часть этого мира, глубоко развивая познавательные идеи и совершенствуясь в качестве теоретической основы медицины и сельского хозяйства, биология приобрела исключительно большое значение в научно-техническом прогрессе, стала производительной силой.

Методы исследований. Как известно, новые теоретические представления и продвижение познания вперед в любой науке всегда определялись и определяются созданием и использованием новых методов исследования. Биология не является исключением из этого правила.

Основными методами, используемыми в биологических науках, являются описательный, сравнительный, исторический и экспериментальный.

Описательный метод является самым старым методом и основан на наблюдении организмов. Он заключается в сборе фактического материала и описании его. Возникнув в самом начале биологического познания, этот метод долгое время оставался единственным в изучении строения и свойств клеток, тканей и организмов. Поэтому старая (традиционная) биология была связана с простым отражением живого мира в виде описания растений и животных, т. е. она являлась, по существу, описательной наукой. Использование этого метода позволило заложить основы биологических знаний. Достаточно вспомнить насколько успешным оказался этот метод в систематике и в создании науки о систематике организмов.

Описательный метод широко используется и в наше время, особенно в зоологии, ботанике, цитологии, экологии и других науках. Изучение клеток с помощью светового или электронного микроскопа и описание выявленных при этом микроскопических или субмикроскопических особенностей в их строении представляет собой один из теперешних примеров использования описательного метода.

Сравнительный метод заключается в сравнении изучаемых организмов, их структур и функций между собой с целью выявления сходств и различий. Этот метод утвердился в биологии в XVIII в. и оказался очень плодотворным в решении многих крупнейших проблем. С помощью этого метода и в сочетании с описательным методом были получены сведения, позволившие в XVIII в. Заложить основы систематики растений и животных (К. Линней), а также сформулировать клеточную теорию (М. Шлейден и Т. Шванн) и учение об основных типах развития (К. Бэр). Метод широко был использован в XIX в. в обосновании теории эволюции, а также в перестройке ряда биологических наук на основе этой теории. Однако использование этого метода не сопровождалось выходом биологии за пределы описательной науки.

Сравнительный метод широко используют в разных биологических науках и в наше время.

Сравнение приобретает особую ценность тогда, когда невозможно дать определение понятия. Например, с помощью электронного микроскопа часто получают изображения, истинное содержание которых заранее неизвестно. Только сравнение их со светомикроскопическими изображениями позволяет получить желаемые данные.

Во второй половине XIX в. благодаря Ч. Дарвину в биологию входит исторический метод, который позволил поставить на научные основы исследование закономерностей появления и развития организмов, становления структуры и функций организмов во времени и в пространстве. С введением этого метода в биологии немедленно произошли значительные качественные изменения. Исторический метод превратил биологию из науки чисто описательной в науку, объясняющую, как произошли и как функционируют многообразные живые системы. Благодаря этому методу биология поднялась сразу на несколько ступеней выше. В настоящее время исторический метод вышел, по существу, за рамки метода исследования. Он стал всеобщим подходом к изучению явлений жизни во всех биологических науках.

Экспериментальный метод заключается в активном изучении того или иного явления путем эксперимента. Нельзя не отметить, что вопрос об опытном изучении природы, как новом принципе естественнонаучного познания, т. е. вопрос об эксперименте, как одной из основ в познании природы, был поставлен еще в XVII в. английским философом Ф. Бэконом (1561-1626). Его введение в биологию связано с работами В. Гарвея в XVII в. по изучению кровообращения. Однако экспериментальный метод широко вошел в биологию лишь в начале XIX в., причем через физиологию, в которой стали использовать большое количество инструментальных методик, позволявших регистрировать и количественно характеризовать приуроченность функций к структуре. Благодаря трудам Ф. Мажанди (1783-1855), Г. Гельмгольца (1821-1894), И. М. Сеченова (1829-1905), а также классиков эксперимента К. Вернара (1813-1878) и И. П. Павлова (1849-1936) физиология, вероятно, первой из биологических наук стала экспериментальной наукой.

Другим направлением, по которому в биологию вошел экспериментальный метод, оказалось изучение наследственности и изменчивости организмов. Здесь главнейшая заслуга принадлежит' Г. Менделю, который в отличие от своих предшественников использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основе получаемых данных. Работа Г. Менделя явилась классическим образцом методологии экспериментальной науки.

В обосновании экспериментального метода важное значение имели работы, выполненные в микробиологии Л. Пастером (1822-1895), который впервые ввел эксперимент для изучения брожения и опровержения теории самопроизвольного зарождения микроорганизмов, а затем для разработки вакцинации против инфекционных болезней. Во второй половине XIX в. вслед за Л. Пастером значительный вклад в разработку и обоснование экспериментального метода в микробиологии внесли Р. Кох (1843-1910), Д. Листер (1827-1912), И. И. Мечников (1845-1916), Д. И. Ивановский (1864-1920), С. Н. Виноградский (1856-1953), М. Бейеринк (1851-1931) и другие. В XIX в. биология обогатилась также созданием методических основ моделирования, которое является высшей формой эксперимента. Созданные Л. Пастером, Р. Кохом и другими микробиологами способы заражения лабораторных животных патогенными микроорганизмами и изучение на них патогенеза инфекционных болезней — это классический пример моделирования, перешедшего в XX в. и очень дополненного в наше время моделированием не только разных болезней, но и различных жизненных процессов, включая происхождение жизни.

Начиная примерно с 40-х годов XX в. экспериментальный метод в биологии подвергся значительному усовершенствованию за счет повышения разрешающей способности многих биологических методик и разработки новых экспериментальных приемов. Например, была очень повышена разрешающая способность генетического анализа, ряда иммунологических методик. В практику исследований были введены культивированные соматические клетки, выделение биохимических мутантов микроорганизмов и соматических клеток и т. д. Экспериментальный метод стал широко обогащаться методами физики и химии, которые оказались исключительно ценными не только в качестве самостоятельных методов, но и в сочетаниях с биологическими методами. Например, структура и генетическая роль ДНК были выяснены в результате сочетанного использования химических методов выделения ДНК, химических и физических методов определения ее первичной и вторичной структуры и биологических методов (трансформации и генетического анализа бактерий), доказательства ее роли как генетического материала.

В настоящее время экспериментальный метод характеризуется исключительными возможностями в изучении явлений жизни. Эти возможности определяются использованием микроскопии разных видов, включая электронную с техникой ультратонких срезов, биохимических методов, высокоразрешающего генетического анализа, иммунологических методов, разнообразных методов культивирования и прижизненного наблюдения в культурах клеток, тканей и органов, маркировки эмбрионов, техники оплодотворения в пробирке, метода меченых атомов, рентгене структурного анализа, ультрацентрифугирования, спектрофотометрии, хроматографии, электрофореза, секвенирования, конструкции биологически активных рекомбинантных молекул ДНК и т. д. Новое качество, заложенное в экспериментальном методе, вызвало качественные изменения и в моделировании. Наряду с моделированием на уровне организмов в настоящее время очень развивается моделирование на молекулярном и клеточном уровнях, а также математическое моделирование различных биологических процессов.

Успехи, достигнутые в результате использования экспериментального метода, сопровождались изменениями в подходах к изучению явлений жизни. Новое, заложенное в экспериментальном методе и его техническом оснащении, определило и важные подходы к изучению явлений жизни. Продвижение вперед биологических наук в XX в. во многом определилось также возникновением и развитием системно-структурного подхода к изучению организации и функций живых организмов, анализом и синтезом получаемых данных о структуре и функциях исследуемых объектов. Экспериментальный метод в современном оснащении и в сочетании с системно-структурным подходом в корне преобразил биологию, углубил ее познавательные возможности, расширил представления о научной картине мира, еще больше связал ее с производством, с медициной.

Применение биологических знаний. Прежде всего биологические знания имеют познавательное значение. Однако чрезвычайно велико и их практическое значение. Впервые практика стала формулировать свои заказы биологии с введением в эту науку экспериментального метода. Но тогда биология оказывала влияние на практику опосредованно, в частности, через медицину и сельское хозяйство.

Прямое влияние биологии на материальное производство началось с создания основ биотехнологии в тех областях промышленности, которые основываются на биосинтезирующей деятельности микроорганизмов. На основе биологических знаний уже давно в промышленных условиях осуществляется микробиологический синтез многих органических кислот, которые широко используются в народном хозяйстве и медицине.

В 40—50-е годы было создано промышленное производство антибиотиков, а в начале 60-х годов — производство аминокислот. Важное место в микробиологической промышленности сейчас занимает производство ферментов. Микробиологическая промышленность производит сейчас в больших количествах витамины и другие вещества. Как аминокислоты и антибиотики, так и витамины крайне необходимы в народном хозяйстве и медицине. На основе трансформирующей способности микроорганизмов основано промышленное производство веществ с фармакологическими свойствами из стероидного сырья растительного происхождения.

Наибольшие успехи в производстве различных веществ, в том числе лекарственных (инсулин, соматостатин, интерферон и др.), связаны с генетической инженерией, составляющей сейчас основу биотехнологии.

Исключительно важное значение биология имеет для сельскохозяйственного производства. Например, теоретической основой селекции растений и животных является генетика. В последние годы в сельскохозяйственное производство также вошла генетическая инженерия. Она открыла новые перспективы в увеличении производства пищи.

Генетическая инженерия оказывает существенное влияние на поиск новых источников энергии, новых путей сохранения окружающей среды, очистки ее от различных загрязнений.

Развитие биотехнологии, теоретическую основу которой составляет биология, а методическую — генетическая инженерия, является новым этапом в развитии материального производства. Появление этой технологии есть один из моментов новейшей революции в производительных силах.

Биологическое познание прямым образом связано с медициной, причем эти связи уходят в далекое прошлое и датируются тем же временем, что и возникновение самой биологии. Больше того, многие выдающиеся медики далекого прошлого были одновременно и выдающимися биологами (Гиппократ, Герофил, Эразистрат, Гален, Авиценна, Мальпиги и другие). Тогда и позднее биология стала обслуживать медицину путем «поставки» ей сведений о строении организмов. Однако роль биологии, как теоретической основы медицины в современном понимании, стала формироваться лишь в прошлом веке.

Создание в XIX в. клеточной теории заложило подлинно научные основы связи биологии с медициной. В 1858 году немецкий ученый Р. Вирхов (1821-1902) опубликовал книгу <Щеллю-лярная патология», в которой было сформулировано положение о связи цитологического процесса с клетками, с изменениями в строении клеток. Соединив клеточную теорию с патологией, Р. Вирхов прямым образом «подвел» биологию под медицину в качестве теоретической основы.

Значительные заслуги в укреплении связей биологии и медицины в XIX в. и начале XX в. принадлежат К. Бернару и И. П. Павлову, которые раскрыли и общебиологические основы физиологии и патологии, Л. Пастеру, Р. Коху, Д. И. Ивановскому и их последователям, создавшим учение об инфекционной патологии. Исследуя процессы пищеварения у низших многоклеточных животных, И. И. Мечников заложил биологические основы учения об иммунитете, имеющего большое значение в медицине. На основе микробиологии, иммунологии и паразитологии разрабатываются вопросы диагностики и профилактики инфекционных и паразитарных болезней, развивается эпидемиология.

В укреплении связей биологии с производством и медициной существенный вклад принадлежит генетике, данные которой имеют важнейшее значение в разработке основ диагностики, лечения и профилактики наследственных болезней.

Раздел I

БИОРАЗНООБРАЗИЕ (разнообразие

живого мира)

«На протяжении многих тысячелетий

человек стремился

познать окружающий его мир и то место,

которое он занимает в этом мире,

на маленькой Земле или в большой Вселенной».

1977

Совокупность растений называют флорой (новолат. flora, от лат. Flora — богиня цветов и весны), тогда как совокупность животных — фауной (новолат. fauna, от лат. Fauna — богиня лесов и полей, покровительница стад животных).

На Земле нет места, где бы ни обитали растения и животные. Можно сказать, что жизнь на Земле вездесуща.

Между растениями и животными существует ряд сходств (одинаковое клеточное строения, одинаковый генетический материал и т. д.). В то же время для них характерны существенные различия (наличие целлюлозы в клеточных стенках растений, которой нет в мембранной системе клеток животных, присущий многим растениям неограниченный рост, который не характерен для животных и т. д.). Между растениями и животными существуют различия и по численному составу.

Растения и животные создают живую оболочку Земли, и в этом заключается их планетарная роль. Для человека они являются прежде всего источником пищи. Они обеспечивают многие отрасли промышленности и хозяйственную деятельность человека сырьем и материалами (древесина, хлопок, шерсть и др.), являются лекарственным сырьем для медицинской промышленности, а также обладают многими другими ценными для человека свойствами.

Как полагают многие ученые, растения и животные начали раздельное развитие от общего предка свыше 1 млрд лет назад.

А. И. ОПАРИН,

Глава I

ПРИНЦИПЫ И МЕТОДЫ

КЛАССИФИКАЦИИ ОРГАНИЗМОВ

На Земле идентифицировано около 2 000 000 видов животных и растений, включая виды, которые жили в далеком прошлом, но затем вымерли. На долю растений приходится 500 000 видов, а на долю животных около 1 500 000 видов. Непрерывно открываются также новые виды растений и животных. Чтобы изучать это огромное множество животных и растений, их необходимо вначале классифицировать на сходные группы или категории. Задачу классификации организмов решает наука, которую называют систематикой и предметом которой является изучение и описание особенностей этого бесконечного множества форм.

Кроме того, в задачу систематики входит нахождение названий единиц классификации (таксонов), а также изучение эволюционных взаимоотношений между всеми единицами классификации. Разделами систематики являются таксономия, название которой еще в 1813 г. предложил швейцарский ученый О. Декандолль (1778— 1841) и которая представляет собой теорию и практику классификации, номенклатура (совокупность названий таксонов) и филоге-нетика (установление родства между организмами в историческом плане).

§1 Искусственные системы

Самые первые попытки классификации организмов принадлежат Аристотелю (384-322 гг. до н. э.), который считал, что общее количество видов растений и животных составляет всего лишь несколько сотен. Аристотель и его ученик Теофраст (370-285 гг. до н. э.) подразделяли растения на травы, кустарники и деревья, а животных на ряд групп в зависимости от того, где они живут — водные, земные, воздушные. Последователи этих выдающихся греков использовали далее для классификации организмов такие признаки, как их полезность, вредность или безвредность.

Названные системы классификации были эмпирическими или, как их еще называют, искусственными системами, ибо они не основывались на признании единства естественного происхождения всех живых существ и не отражали естественных связей между разными организмами. Тем не менее даже в средние века в Европе продолжали называть животных и растения именами, данными им еще древними греками и римлянами. Однако это не приводило к успеху, т. к. разные европейские растения и животные характеризовались различиями на разных территориях европейского континента.

Искусственные системы в классификации организмов условно используют и сейчас, когда характеризуют организмы, учитывая их хозяйственные признаки. Например, растения подразделяют на культурные и дикорастущие, съедобные и ядовитые, лекарственные и кормовые и т. д. Животных подразделяют на домашних и диких, на вредителей полей, садов и огородов, на паразитов человека и животных, на переносчиков возбудителей болезней человека и животных и т. д.

Такие подразделения не лишены значения в хозяйственной и другой деятельности человека, однако для научной классификации организмов они не имеют ценности.

§2 Естественные системы

Уже давно выявилась тенденция выделять с целью классификации естественные системы, которые бы отражали естественные связи между организмами. Чрезвычайно важным шагом на пути к научной классификации организмов оказались создание в 1663 г. английским естествоиспытателем Д. Реем (1627-1705) концепции вида. Он считал, что видом является группа сходных организмов, имеющих сходных предков, и что «...один вид никогда не зарождается из семян другого вида». Принимая вид в качестве реальной, но неизменной категории, Д. Рей классифицировал животные организмы на несколько групп по некоторым анатомическим особенностям, например, по строению копыт, рогов. Конечно, эта классификация была примитивной, но она все же дала начало естественным системам классификации.

Основы современной классификации растений и животных были заложены в XVIII в. шведским ученым К. Линнеем (1707-1778). Считая, что нахождение определенного порядка в природе является главнейшей целью науки, К. Линней в качестве основной (начальной) систематической (таксономической) единицы (таксона) определил вид, под которым он понимал совокупность организмов, сходных между собой, как сходны дети от одних родителей, и способных давать плодовитое потомство. Однако К. Линней считал, что со времени создания виды постоянны и неизменны. Он полагал также, что каждый классифицируемый организм должен быть сравним с идеальным типом и что все подобные организмы должны группироваться вокруг идеального типа. На основе изучения сходства организмов он подразделил животных на млекопитающих, птиц, пресмыкающихся, рыб, насекомых, червей, а также ввел в оборот такие таксономические единицы, как вид, род, отряд, класс, разместив их в виде иерархической системы и определив их сопод-чиненность, заключающуюся в том, что каждая категория более высокого уровня включает в себя одну или несколько категорий низшего порядка. Например, класс включает в себя несколько отрядов, отряд — несколько родов, а род — несколько видов.

Кроме того, для научного наименования организмов он ввел так называемую бинарную номенклатуру, в соответствии с которой наименование организмов одного вида, принадлежащих к одному роду, состоит из родового и видового латинских названий, причем первым словом является обозначение рода, вторым — вида. Например, научное название (бинарное обозначение) ландыша майского есть Convallaria majalis, садового гороха — Pissum sativum, домашней кошки — Fells doinast.ica, тигра — Felis tigris. По К. Линнею вслед за бинарным обозначением вида обычно указывают первооткрывателя вида и год открытия вида. Например, научное наименование аскариды человеческой будет Ascaris lumbricoides L., 1758. Это означает, что род аскариды человеческой есть Ascaris, вид есть lumbricoides, и что этот организм впервые был классифицирован К. Линнеем в 1758 г. Линнеевская система является естественной системой классификации.

Значительный вклад в систематику принадлежит французскому ученому Ж. Ламарку (1744-1829), который разделил животных на беспозвоночных и позвоночных, а также определил основные группы (типы) червей (плоские, круглые и кольчатые).

В XIX в. французский ученый Ж. Кювье (1769-1832) ввел в оборот понятие о типе животных и описал несколько типов.

Позднее, когда было разработано понятие о семействе, в соответствии с принципами естественной классификации виды животных и растений (лат. Species) стали объединяться в роды (лат. genus), роды — в семейства (лат. familia), семейства — в отряды (лат. ordo), отряды — в классы (лат. classis), классы — в типы (лат. typos), типы — в царства (лат. regnurn).

В XIX в. немецкий ученый Э. Геккель (1834-1919) разделил живой мир на три царства, а именно: протисты, животные и растения. Он ввел в обиход также понятие о генеалогическом древе, в котором главными категориями стали так называемые стволы. Из одного ствола происходят классы, отряды, семейства, роды. Позднее были предложены и другие подразделения царств.

В связи с совершенствованием классификации сейчас выделяют еще более дифференцированные систематические единицы в пределах основных систематических групп (таксонов), добавляя к ним приставку над или под (надцарство, подцарство, надсемейство, подсемейство, надтип, подтип). Наконец, часто выделяют такие таксо-ны, как раздел, надраздел, триба.

С введением в биологию теории эволюции Ч. Дарвина систематика организмов стала развиваться с учетом их естественного родства и происхождения (филогенетического родства). Поскольку сходство строения и функциональной активности обусловлено эволюционными связями, то учет этих особенностей определил эволюционное направление в систематике. Как считал Ч. Дарвин «Всякая истинная классификация есть генеалогическая». Таким образом, учет сходств строения и эволюционных связей между организмами стал классическим направлением в систематике.

§3 Методы классификации

С целью классификации организмов используют ряд методов. В частности, используют сравнительно-морфологический, сравнительно-эмбриологический, кариологический, эколого-генетический, географический, палеонтологический, молекулярно-генетический и другие методы. Что касается свойств организмов, важных для классификации, то ими являются одноклеточность или многокле-точность, дифференциация клеток, развитие зародышевых листков, процесс и степень развития определенных систем (кровеносной, пищеварительной и других), наличие или отсутствие целома, тип симметрии (радиальная или билатеральная), наличие или отсутствие сегментации тела, генетическое сходство, количество и морфология хромосом, строение пыльцевых зерен у растений, биохимические и иммунологические свойства. В наше время чрезвычайное значение приобрело установление последовательностей азотистых оснований в ДНК или секвенирование ДНК (генетическая дактилоскопия), а также установление последовательностей аминокислот в белках. Молекулярно-генетическая филогения основывается на представлениях о том, что последовательность азотистых оснований в ДНК и аминокислот в белках одного организма отличается от этих последовательностей другого организма. Следовательно, различия в этих последовательностях у разных организмов являются мерой эволюционных «расстояний» между организмами. Образцы различий могут быть выстроены в генеалогический ряд.

В обработке полученных результатов широко используют компьютерную технику.

Современная концепция в систематике является динамической. Она основана не только на использовании названных выше свойств, но и на учете географического распространения, экологических потребностей, генетических механизмов и степени, репродуктивной изоляции классифицируемых организмов.

В современной классификации растений и животных имеется много спорных вопросов, т. к. одни биологи склонны укрупнять систематические единицы, тогда как другие стремятся их детализировать. Поэтому существует несколько классификаций как растений, так и животных. В приводимом ниже описании разнообразия организмов используется классификация, исходным моментом которой является разделение живого мира на царства растений и животных.

Вопросы для обсуждения

1. Дайте определение систематике и назовите ее основные разделы.

2. Что вы понимаете под искусственными системами, когда их стали использовать и какова их роль сейчас в классификации организмов?

3. Что вы понимаете под естественными системами и какова их роль в классификации организмов?

4. Перечислите основные методы, используемые в систематике. Какие из них являются главными?

б. Назовите основные таксономические единицы и правила использования бинарной номенклатуры.

6. Почему в классификации организмов много спорных вопросов?

Литература

Грин Н„ Стаупг У., Тейлор Д. Биология. М.: Мир. 1998. 368 стр.

Нидон К„ Петерман И„ Шеффель П., Шайба Б. Растения и животные. М.: Мир. 1991. 260 стр.

Пехов А. П. Биология и общая генетика. М.: РУДН. 1993. 439 стр.

Полянский Ю.А. (ред.). Жизнь животных, т. 1. М.: Просвещение. 1987. 445 стр.

Хадоры Э„ Венер Р. Общая зоология. М.: Мир. 1989. 523 стр.

Яковлев Г. П., Челомбитъко В. А. Ботаника. М.: Высшая школа. 1990. 367 стр.

Rosenzweig M. L. Species Diversity in Space and Time. Cambridge University Press, 1995. 436 pp.

Глава II

РАЗНООБРАЗИЕ РАСТЕНИЙ

Для описания разнообразия растении мы используем систему классификации, основанную на макросистеме, предложенной А. Л. Тах-таджяном (1971). В обобщенном виде под влиянием этой макросистемы классификации мира растительных организмов начинают с разделения его на надцарство доядерные организмы (Procaryota) и надцарство настоящие ядерные организмы (Eucaryota).

§4 Надцарство доящерные организмы

( PROCARYOTA)

К этому надцарству относят микроскопические организмы, тело которых представлено слоевищем, или талломом, не расчлененным ни на корень, ни на стебель, ни на листья. У них нет ядерной мембраны и организованного ядра. У них нет также стадии эмбрионального развития. Прокариотами являются в основном одноклеточные организмы. К ним относят и некоторые колониальные формы. Одноклеточные организмы растительной природы вместе с одноклеточными животными составляют значительную часть биомассы Земли.

Генетический материал у прокариотов представлен молекулой ДНК, находящейся в ядерной (центральной) зоне. Размножаются прокариоты путем простого деления, хотя у некоторых из них отмечается наличие аналога полового процесса в виде конъюгации.

Прокариоты не обладают ни хлоропластами, ни митохондри-ями. У них нет комплекса Гольджи и центриолей, но есть рибо-сомы. Характерной особенностью прокариот является наличие у них клеточной стенки. Известны подвижные формы этих организмов.

Некоторые прокариоты способны к фиксации азота атмосферы, но не способны к жизни в отсутствие кислорода (анаэробы).

В пределах этого надцарства Доядерные организмы выделяют лишь одно царство — царство дробянок (Mychota), которое классифицируют далее на подцарства Архебактерии (Archaeobacteria, или Archaeobacteriobionta), Настоящие бактерии (Bacteria, или Bacteriobionta) и Оксифотобактерии (Oxyphotobacteria, или Oxyphotobacteriobionta).

Подцарство Архебактерии ( Archaeobacteria ). Организмы этого подцарства представлены метаногенными, галофильными и серо-зависимыми бактериями. Известно около 50 видов архебактерий. Выделяя здесь эту группу организмов в самостоятельное подцар-ство нельзя не отметить, что многие биологи классифицируют архебактерий в качестве самостоятельного царства (кроме царств растений и животных).

Метаногенные бактерии образуют метан путем восстановления диоксида углерода молекулярным водородом. Метан является основным продуктом их метаболизма. Считают, что весь метан биогенного происхождения на Земле образован деятельностью метано-генных бактерий. Их ежегодная производительность составляет около 1,0 х 109 т метана.

Эти бактерии обитают в строго анаэробных условиях в иле водоемов, в болотах и других местах, а также в желудочно-ки-шечном тракте человека и животных. Особенно много их в рубце жвачных.

Галобактерии — это обитатели горячих соленых водоемов. Благоприятной для них является среда, которая содержит Nad в количестве 20—30%, т. е. является насыщенным раствором.

Серозависимые бактерии являются обитателями горячих кислых водоемов и почв, вулканических расщелин. Образование месторождений серы обязано серозависимым бактериям.

В отличие от большинства настоящих бактерий для архебактерий характерен ряд особенностей. Например, плазматическая мембрана архебактерий имеет однослойную структуру, а в пептидогли-кане их клеточных стенок в отличие от клеточных стенок настоящих бактерий отсутствует муреин.

Уникальностью характеризуются также мембранные липиды архебактерий, ибо они не содержат эфиров глицерина и жирных кислот, но содержат изопреноидные углеводороды, которые обычно встречаются в нефти.

В ДНК некоторых архебактерий отмечается наличие повторяющихся последовательностей азотистых оснований, чего нет у настоящих бактерий. У галофилов обнаружен родопсиноподобный белок, обычно содержащийся в зрительном пурпуре многих позвоночных.

Схема синтеза белков, осуществляемого архебактериями, является такой же, как и у настоящих бактерий, однако в тРНК этих организмов нет ни тимина, ни урацила. Последний представлен псевдоуридином. Есть также отличия и в структуре рРНК.

Перечисленные особенности делают архебактерии по существу промежуточной формой между растениями и животными, что и явилось основанием для некоторых ученых к выделению их в самостоятельное царство.

Однако следует заметить, что многие ученые не разделяют эту точку зрения. Большинство специалистов классифицируют архебактерии в рамках подцарства.

Среди архебактерии встречаются как аэробы, так и хемоавтот-рофы и хемогетеротрофы. Архебактерии играют важную роль в природе.

Классификация архебактерии еще плохо разработана.

Архебактерии являются древнейшими прокариотами. Возможно, что они были самыми первыми организмами на Земле.

Подцарство Настоящие бактерии ( Bacteria ). Бактерии являются одноклеточными микроскопическими организмами, размеры которых измеряются микронами. На основе метода окраски по Граму различают грамположительные и грамотрицательные бактерии. В зависимости от формы среди бактерий различают бациллы, стафилококки, диплококки, стрептококки, вибрионы, спириллы (рис. 1). Бактерии многих видов подвижны, обладая жгутиками или ресничками.

Бактерии содержат почти все структурные элементы, которые характерны для клеток растений и животных (см. гл. VI). Однако в отличие от клеток растений и животных бактерии не обладают хлоропластами (митохондриями), центриолями, ядерной мембраной, ядрышком.

Бактерии являются обитателями практически всех экологических ниш.

Размножение бактерий происходит путем простого деления или путем спорообразования. У бактерий многих видов открыта конъюгация, являющаяся аналогом полового процесса и зависимая от содержания в них плазмид. Бактерии, обладающие плазмидами, служат в качестве доноров генетического материала. Бактерии, не обладающие плазмидами, являются реципиентами этого материала (см. гл. X).

Большинство бактерий является гетеротрофами, а часть их является автотрофами или хемосинтезирующими. Бактерии многих видов являются аэробами, но встречаются и анаэробы.

Значение бактерий в природе очень велико. Они вызывают брожение, гниение, а также минерализацию органических веществ, результатом деятельности бактерий является накопление карбонатов, сульфидов, фосфатов, бокситов, образование железных руд и т- д. Клубеньковые бактерии, колонизируя корневые клубеньки бобовых растений, усваивают азот атмосферы благодаря наличию в них специальных органелл — симбиосом. Из симбиосом азот в форме NHg или NH44 ' под действием бактериального мембранного белка транспортируется затем в клетки растений.

Рис. 1. Морфологические формы бактерий:

1 – стафилококки; 2 – стрептококки; 3 – диплококки; 4 – бациллы;

5 – спириллы; 6 – капсульные бациллы и кокки; 7 – жгутиковые бациллы

Бактерии широко используют в практике. Например, бактерии молочного брожения используют в производстве молочнокислых продуктов, а также в консервировании овощей, силосовании кормов для животных.

Известны также виды бактерий, являющиеся продуцентами антибиотиков. Бактерии используют в генной инженерии для клони-рования и поддержания в них векторных молекул ДНК (плазмид) и гибридных молекул ДНК (см. раздел VI).

Многие виды бактерий являются возбудителями бактериальных болезней человека, животных и растений. Наиболее известными бактериальными болезнями человека являются дизентерия, чума, холера, дифтерия и другие. У человека и животных бактерии вызывают туберкулез, бруцеллез, сибирскую язву и другие болезни.

Бактерии являются древнейшими обитателями Земли. Однако их происхождение не совсем ясно. Предполагают, что они произошли от самых примитивных организмов, называемых проге-нотами и оцениваемых в качестве предшественников прокариот. Но сведения о строении и функциях прогенот отсутствуют и это мешает установлению действительных связей между прогенота-ми и бактериями.

Подцарство Оксифотобактерии ( Oxyphotobacteria , или Oxyphotobacteriobionta ) . Это подцарство представлено отделами ци-анобактерий и хлороксибактерий.

Отдел Цианобактерии (Cyanobacteria). Строение цианобакте-рий (по старой ботанической терминологии — сине-зеленых водорослей) до некоторой степени сходно со строением бактерий (рис. 2). Известно около 2500 видов. В основном они являются одноклеточными организмами разной формы (округлой, цилиндрической), но могут образовывать длинные многоклеточные нити или даже объединяться в колонии. Однако они отличаются от настоящих бактерий тем, что их клеточные стенки содержат некоторое количество целлюлозы и что они способны к фотосинтезу, т. к. в цитоплазме содержат хлорофилл (в гранулах, но не в хлоропластах) и другие пигменты (каротин, ксантофил и фикобилины), создающие их окраску. Некоторые клетки в многоклеточных цианобактериях обладают способностью фиксировать азот атмосферы.

Обитают в пресной и соленой воде, входя в состав фитопланктона, а также являются обитателями почвы. Отдельные виды встречаются в морях. При неблагоприятных условиях способны образовывать споры. Они могут также находиться в симбиотических отношениях с грибами (см. § 33).

Размножение цианобактерий происходит путем простого деления. При интенсивном размножении вызывают «цветение» воды.

Осуществляя фотосинтез, цианобактерий ответственны за появление значительного количества кислорода в атмосфере. Хозяйственного значения не имеют, если не считать, что их несгнившие остатки участвуют в образовании лечебных грязей.

Считают, что цианобактерий тоже являются древнейшими обитателями Земли. Они существовали еще до появления папоротников (щитовников), мхов и семенных растений. Их возраст составляет несколько миллиардов лет. По мнению многих ботаников они составляют тупиковую ветвь в эволюции.

Отдел Хлороксибактерии (род РгосЫогоп). Организмы этого отдела немногочисленны (в видовом составе). Они также способны к фотосинтезу, т. к. содержат хлорофилл. Они содержат и другие пигменты, обнаруживаемые в клетках зеленых растений.

§5 Надцарство ядерные организмы (EUCARYOTA)

В пределах этого надцарства у растений выделяют царство грибов и царство растений.

Царство Грибы — Mycota ( Fungi ). Для организмов этого царства, которое представляет собой очень гетерогенную группу организмов, характерны значительная выраженность клеточной оболочки, неподвижность в вегетативном состоянии, гетеротрофный тип питания путем всасывания (адсорбции) и неограниченный рост. Насчитывают около 100 000 видов грибов, характеризующихся разнообразием как по строению, размерам (рис. 3), местам обитания, так и по физиологическим функциям. Оптимальные температуры для роста грибов равны 20—26°С. Обитают практически во всех географических зонах, встречаясь в воде (пресной и морской) и почве, на мертвом органическом материале, многие виды паразитируют в тканях растений и животных, включая человека, причем степень паразитизма весьма различна.

Грибы могут вступать в симбиотические отношения с другими организмами, например, с водорослями или цианобактериями, образуя лишайники. Они могут также вступать в симбиоз с высшими растениями, обволакивая и проникая в корни растений своими гифами и формируя структуры (корень + гриб), получивший название микориз. Такой симбиоз с растениями обеспечивает потребность последних в фосфатах. Например, 80% наземных растений, включая и многие сельскохозяйственные растения, формируют симбиоз с грибом Glornus versiforme, который обитает на их корнях и облегчает им восприятие фосфатов и минеральных питательных веществ из почвы.

Среди организмов этого царства встречаются как одноклеточные (микроскопические), или низшие, так и многоклеточные (высшие) грибы.

Грибы классифицируют на отделы: Настоящие грибы, Оомице-ты и Лишайники.

Среди Настоящих грибов различают классы Хитридиевые грибы, Зигомицеты, Аскомицеты (Сумчатые грибы), Базидиомицеты и Несовершенные грибы (Дейтеромицеты).

Хитридиевые грибы представлены микроскопическими организмами, тело которых имеет вид цитоплазматической массы. Они ведут паразитический образ жизни на водных растениях и животных. Известен также вид этих грибов, вызывающий рак картофеля.

Зигомицеты являются наземными грибами. Тело их представлено неклеточным мицелием. Эти грибы ведут как сапрофитичес-кий, так и паразитический образ жизни, паразитируя на разных животных. Среди сапрофитов наиболее известными являются так называемые мукоровые грибы (плесени хлеба, овощей и других продуктов).

Отдельные виды зигомицетов являются паразитами, вызывая микозы человека и животных.

Аскомицеты представляют собой наиболее многочисленную группу грибов (более 30000 видов), различающихся между собой прежде всегоразмерами. Встречаются как одноклеточные, так и многоклеточные формы. Тело их представлено гаплоидным мицелием. Образуют аски (сумки), содержащие аскоспоры, что является характерным признаком этих грибов. Среди грибов данной группы наиболее известными являются дрожжи (пивные, винные, кефирные и другие). Например, дрожжи Saccharomices cerevisiae влияют на ферментацию глюкозы (CgH^Og). Одна молекула глюкозы дает в ходе этого ферментативного процесса две молекулы этилового спирта.

Базидиомицеты являются высшими грибами. Они характеризуются большими размерами, которые могут доходить даже до полуметра. Их тело также состоит из мицелия (грибницы), но многоклеточного, формирующего грибы. Протопласт грибных клеток содержит не только ядра, но и митохондрии, рибосомы, аппарат Гольджи и даже гликоген в качестве запасного вещества. Гифы переплетаются, образуя плодовые тела, которые в обыденной жизни называют грибами, состоящими из ножки и шляпки.

Эти грибы размножаются как вегетативным и бесполым, так и половым путем. Наиболее известными базидиомицетами являются шляпочные грибы, среди которых имеются как съедобные, так и ядовитые.

Несовершенные грибы тоже весьма многочисленны (около 30 000 видов). Очень распространены в разных географических зонах. Среди них есть как сапрофиты, которые широко участвуют в разложении остатков растений и в почвообразовательных процессах, так и паразитические формы. Наиболее известными видами этих организмов являются грибы из рода Fusarium, которые вызывают у многих культурных растений (хлопчатник, лен и другие) болезнь, называемую вилтом. В числе несовершенных грибов широко известны также грибы из родов Penicillium и Aspergillus. Они широко используются в промышленном производстве лимонной, фумаровой и других органических кислот, а также ряда ферментов. Отдельные виды этих родов являются продуцентами антибиотиков, широко используемых в медицине и ветеринарной медицине.

Оомицеты — это в основном водные и почвенные грибы. Среди этих грибов очень известны виды из рода Phytophtora, которые вызывают болезни картофеля, томатов и других пасленовых.

Грибы играют значительную роль в природе. В частности, они являются организмами-разрушителями. Входя в состав многих экологических систем, ответственны за разрушение органического материала растительного происхождения, т. к. продуцируют ферменты, действующие на целлюлозу, лигнин и другие вещества растительных клеток. Их широко используют в сыроваренной промышленности для производства многих популярных сортов сыра. Нельзя не отметить, что Neurospora crassa принадлежит выдающаяся роль в качестве экспериментального объекта в познании многих метаболических путей.

Лишайники представляют собой сложные организмы, образованные в результате симбиоза между грибами, водорослями зелеными, или цианобактериями, и азотобактером (рис. 4). Следовательно, лишайник — это комбинированный организм, т. е. гриб + водоросль + азотобактер, существование которого обеспечивается тем, что гифы гриба ответственны за поглощение воды и минеральных веществ, водоросль — за фотосинтез, а азотобактер — за фиксацию азота атмосферы. Лишайники являются обитателями всех ботанико-географических зон. Размножаются вегетативным, бесполым и половым путем.

Значение лишайников в природе велико. Из-за высокой чувствительности к загрязнителям среды лишайники используют в качестве индикаторов чистоты атмосферы. На севере они являются главным кормом для оленей. Их используют также в аптечном деле и в парфюмерии.

Грибы имеют древнее происхождение. Их ископаемые остатки отмечены в силуре и девоне. Отдельные ботаники предполагают, что они произошли от зеленых водорослей, потерявших хлорофилл. Более распространенный взгляд заключается в том, что грибы произошли от жгутиковых (простейших).

Ископаемые остатки лишайников также найдены в девоне, что определяет их возраст примерно в 400 млн лет. Предполагают, что образование лишайников явилось первым случаем установления симбиотических отношений между организмами. Это обеспечило возможность их широкого распространения в разных экологических нишах.

Царство Растения ( Plantae или Vegetabilia ) . Это царство представлено организмами, клетки которых обладают плотными клеточными стенками и которые способны к фотосинтезу. Растения этого царства классифицируют на три подцарства, а именно: багрянки (Phycobionta), настоящие водоросли (Phycobionta) и высшие растения (Embryophyta).

Тело багрянок и настоящих водорослей не расчленено на ткани и органы. По этой причине их часто называют низшими, или слоевцовыми растениями. Напротив, остальные растения известны в качестве высших растений, т. к. характеризуются наличием разных тканей и расчленением тела на органы. Эти растения приспособлены к жизни в наземных условиях.

Подцарство Багрянки ( Rhodophyta ). Растения этого подцарства являются многоклеточными организмами (рис. 5). Тело багрянок представлено слоевищем. Насчитывают около 4000 видов багрянок, среди которых наиболее известными являются порфира, не-малион, кораллины и другие. Их багряная окраска зависит от содержания в них хлорофилла, каротиноидов, красных фикоэритри-нов, синих фикоцианинов и других пигментов. Являются обитателями больших глубин морей и океанов. Часто их называют красными водорослями. Особенно ими богато Красное море.

Размножаются как бесполым, так и половым путем с чередованием полового и бесполого поколений.

Имеют хозяйственное значение. Отдельные виды служат сырьем, из которого добывают агар-агар. В ряде стран их используют на корм скоту

Багрянки являются древними организмами, но происхождение их и филогенетические связи между отдельными видами остаются невыясненными.

Подцарство Настоящие водоросли ( Phycobionta ). Настоящие водоросли являются растениями, тело которых представлено слоевищем. Известно около 30 000 видов этих организмов. Встречаются как одноклеточные, так и многоклеточные водоросли. Они являются обитателями в основном пресноводных водоемов и морей, но встречаются почвенные водоросли и даже водоросли снега и льда. Размножение одноклеточных водорослей происходит путем деления, многоклеточные формы размножаются как бесполым, так и половым путем. Когда-то Вергилий писал — «nigilvilor algo» (ничего нет хуже водорослей). В наше время водоросли приобрели Другие оценки.

Альгологи классифицируют водоросли на несколько отделов.

Отдел Зеленые водоросли ( Chlorophyta ). Этот отдел представлен подвижными и неподвижными одноклеточными и многоклеточными организмами, обладающими довольно толстой клеточной стенкой и имеющими форму нитей, трубочек (рис. 6). Некоторые виды формируют подвижные и неподвижные колонии. Насчитывают свыше 13 000 видов этих водорослей, большинство которых является обитателями пресных водоемов. Но известны и морские формы.

Одноклеточные и многоклеточные зеленые водоросли способны к фотосинтезу, т. к. содержат хлоропласты, в которых концентрируется хлорофилл и от наличия которого они имеют зеленую окраску. Они обладают также ксантофилом и каротином.

Типичными представителями одноклеточных зеленых водорослей являются хламидомонады (из рода Chlamidomonas), обитающие в лужах и других небольших пресных водоемах, и хлорелла из одноименного рода (Chlorella), которая обитает в пресных и соленых водах, на поверхности сырой земли, на коре деревьев. Хлорелла обладает исключительной фотосинтезирующей активностью, будучи способной улавливать и использовать 10-12% световой энергии. Содержит ряд ценных белков, витамины В, С и К.

Примером многоклеточных зеленых водорослей является обитатель прудов вольвокс (Volvox). Формируя колонию, этот организм состоит из 500—60 000 клеток, каждая из которых снабжена двумя жгутиками, а также содержит глазок, дифференцированное ядро и хлоропласт. Толстая студенистая оболочка окружает каждую клетку и отделяет ее от соседних клеток. Если в колонии одна клетка погибает, остальные продолжают жить. Расположение клеток в колонии обеспечивает движение этого организма.

Размножаются путем деления или образования подвижных зооспор, которые отделяются от материнского организма, прикрепляются к какому-либо субстрату, а затем развиваются в новый организм. У спирогир имеет место половой процесс в виде конъюгации.

Хозяйственное значение этих водорослей невелико, если не считать, что из-за богатого содержания белков и витаминов хлореллу используют в корм для животных. Будучи компонентом фитопланктона, служит кормом для рыб.

Предполагают, что зеленые водоросли возникли в результате ароморфозов, которыми оказались образование ядра, появление мно-гоклеточности и полового процесса. Предполагают также, что они дали начало примитивным наземным растениям, ставшими пред-ковыми формами мохообразных.

Отдел Диатомовые водоросли, или диатомеи ( Chrysophyta ) представлен в основном многоклеточными организмами, а иногда даже и колониальными формами (рис. 7). Встречаются и одноклеточные формы. Известно 5700 видов. Характеризуются четкой дифференциацией тела на цитоплазму и ядро. Клеточная стенка «пропитана» кремнеземом, в результате чего ее называют панцирем. Являются обитателями пресных водоемов, морей и океанов и входят в состав фитопланктона.

В клетках этих водорослей имеются хлоропласты в виде зерен или пластинок, которые окрашены в разные цвета из-за содержания разных пигментов (каротин, ксантофилл и его вариант диато-мин). По этой причине диатомовые водоросли часто называют золотисто-коричневыми.

Размножение происходит путем деления клеток пополам. У отдельных видов существует половое размножение. Диатомеи — это диплоидные организмы.

Напластования отмерших диатомовых водорослей дали начало диатомиту, который на 50-80% состоит из их панцирей и который используют в качестве поглотителей в химии и пищевой промышленности.

Значение диатомовых водорослей в природе очень большое. Они занимают исключительно важное место в круговороте веществ, являясь главным кормом для рыб. Их пищевая ценность является очень высокой.

Эволюционно диатомовые водоросли стоят ближе всего к зеленым водорослям, но происхождение их неясно.

Отдел Бурые водоросли ( Phaeophyta ). Эти водоросли являются многоклеточными организмами. Каждая клетка содержит лишь одно ядро. По размерам они самые большие (длинные) водоросли, достигая в длину нескольких десятков метров (рис. 8). Известно около 900 видов. Являются обитателями морей и океанов, включая северные. Их пигментация определяется тем, что они содержат хлоропласты, окрашенные в бурый цвет из-за содержания хлорофилла, а также бурых пигментов (каротина, ксантофилла и фукок-сантина).

Наиболее известными являются водоросли из родов Laminaria и Fucus.

Размножаются вегетативным, бесполым и половым путем. Вегетативное размножение происходит частями сло-евища, бесполое (споровое) — с помощью гаплоидных спор, развивающихся в гаметофит, половое — путем изогамии, гетерогамии или оогаши. Характерно чередование гаплоидного и диплоидного поколений. Половые клетки снабжены жгутиками.

Хозяйственное значение этих водорослей, особенно ламинарий, очень велико. Из них добывают йод, калийные соли, агароподоб-ные вещества, используемые в пищевой промышленности. Ламинарии, известные под названием «морской капусты», используются в пищу человеком. Некоторые водоросли используют в качестве удобрения.

Бурые водоросли — древнейшие водные растения. Предполагают, что они дали начало папоротниковидным растениям.

Заканчивая краткое изложение данных о водорослях, следует отметить, что в целом водоросли имеют важное значение во многих экологических системах. Фактически, они являются главным источником органических веществ в водоемах. Подсчитано, что водоросли ответственны за ежегодный синтез в Мировом океане органического вещества в количестве 550 млрд тонн, что составляет значительную часть продуктивности всей биосферы. Далее им принадлежит очень значительная роль в обогащении кислородом атмосферы. Наконец, водоросли участвуют в самоочищении водоемов, в почвообразовании.

Подцарство Высшие растения ( Embryophyta или Embryobionta ). Растения, входящие в состав этого подцарства, часто называют ли-стостебельными, поскольку их тело расчленено на стебель, лист и корень. Кроме того, их называют еще зародышевыми, т. к. они содержат зародыш. Наконец, их называют сосудистыми растениями (кроме моховидных), поскольку в органах их спорофитов имеются сосуды и трахеиды.

Высшие растения в ходе исторического развития приспособились к жизни в наземных условиях. У этих растений отмечается чередование полового (гаметофит) и бесполого (спорофит) поколений. Гаметофит продуцирует гаметы и защищает зародыш, тогда как спорофит продуцирует споры, которые обеспечивают следующую генерацию гаметофита. У высших растений доминирует диплоидный спорофит, который и определяет внешний вид растения.

В подцарстве Высшие растения различают высшие споровые и высшие семенные растения. Для высших споровых характерно разделение полового и бесполого размножения. В первом случае размножение происходит одноклеточными спорами, образующимися в спорангиях спорофитов, во втором — гаметами, образующимися в половых органах гаметофитов. Для высших семенных растений характерно наличие многоклеточного образования — семени, образующегося в процессе размножения и придающего семенным растениям важнейшее эволюционное преимущество перед споровыми.

Подцарство Высшие растения классифицируют на несколько отделов. В частности, высшие споровые растения классифицируют на отделы Риниофиты (Rhyniophyta) и Зостерофиллофиты (Zostrophyllophyta), организмы которых полностью вымерли, а также на ныне существующие отделы Моховидные (Bryophyta), Плау-новидные (Lycopodiophyta), Псилотовидные (Psilotophyta), Хвощевидные (Eguisetophyta), Папоротниковидные (Polypodiophyta). Высшие семенные растения классифицируют на отделы Голосеменные (Gymnospermae) и Покрытосеменные, или Цветковые (Angiospermae, или Magnoliophyta). Голосеменные и Покрытосеменные — это семенные растения, тогда как все остальные — это высшие споровые растения. У части высших споровых все споры одинаковы (равноспоровые растения), а у некоторых споры имеют разную величину (разноспоровые растения).

Из растений современных отделов ниже будут рассмотрены лишь отдельные из них.

Отдел Моховидные (Bryophyta). Этот отдел представлен низкорослыми, многолетними растениями. У некоторых из них тело представлено слоевищем, но у большинства расчленено на стебель и листья (рис. 9). Насчитывают около 25 000 видов моховидных. Являются обитателями сырых мест во всех географических зонах. К почве прикрепляются с помощью волосовидных выростов, называемых ризоидами. Через эти структуры они осуществляют почвенное питание. Наиболее известными представителями этого типа являются кукушкин лен, маршанция многообразная, мхи рода сфагнум (300 видов).

В развитии мхов характерно чередование полового (гаметофи-та) и бесполого (спорофита) поколений. На растениях полового поколения образуются споры разных размеров. После оплодотворения женских половых клеток мужскими развивается спорофит (спорангий со спорами), клетки которого имеют диплоидный набор хромосом. Образующиеся в результате мейоза в спорангии споры имеют гаплоидный набор хромосом. Высыпаясь на почву, споры прорастают, давая начало растению, гаметофиту, имеющему в размножающихся митозом клетках гаплоидный набор хромосом. Гаплоидный гаметофит доминирует в цикле развития. На гаметофите вновь образуются половые клетки, и процесс повторяется. Специфической особенностью этих растений является не только доминирование гаплоидного гаметофита, но также и то, что гаметофит (половое поколение) и спорофит (бесполое поколение) представляют собой одно растение.

Значение моховидных в природе заключается в том, что, находясь в экосистемах, они воздействуют на среду обитания многих видов других растений, равно как и животных. Интенсивное размножение мхов способствует ухудшению почвы. Отмирая, сфагновые мхи «оторфовываются» и образуют залежи торфа. Некоторые виды используются в медицинской промышленности.

Полагают, что растения этой группы были одними из первых наземных растений и широко произрастали еще 450-500 млн лет назад и что эволюция их заключалась в регрессивном развитии спорофита. Считают, что моховидные являются слепой эволюционной ветвью.

Отдел Папоротниковидные (Palypodiophyta). В пределах этого отдела классифицируют травянистые растения, также обитающие в сырых местах (рис. 10). Некоторые Папоротниковидные, обитающие в тропиках, представлены древесными формами, отдельные из которых достигают 25 метров в высоту. Насчитывают более 10 000 видов этих растений. Типичными представителями папоротниковидных являются папоротники.

Для папоротниковидных также характерно чередование полового и бесполого поколений, однако, в отличие от моховидных, у организмов, принадлежащих к этому отделу, преобладающим является спорофит, для которого характерна диплоидность. У спорофита имеются основные органы — стебель, листья, корень. Напротив, гаметофит характеризуется очень малыми размерами, представляя небольшую пластинку, прикрепленную к почве с помощью ризоидов.

Для папоротниковидных характерен сложный цикл развития. Цикл начинается с развития изоспор гаметофита (заростка), на котором образуются половые органы в виде антеридиев и архегониев. В последних развиваются половые клетки. После их оплодотворения из зиготы образуется спорофит, на котором образуются споры, дающие начало гаметофиту. Большинство папоротниковидных представлено разноспоровыми растениями.

Значение папоротниковидных в природе большое, т. к. они входят в состав многих экосистем. Хозяйственное значение современных папоротниковидных небольшое, если не считать, что растения отдельных видов служат лекарственным сырьем.

Папоротниковидные классифицируют на 7 отделов, большинство из которых представлено вымершими видами.

Папоротниковидные являются наиболее древними споровыми растениями. Они уже были в девоне, а в карбоне составляли леса из растений, высота которых достигала до 30 м. Остатки этих растений принимали участие в образовании каменного угля.

Отдел Голосеменные (Gymnospermae). Растения этого отдела дают семена, которые представляют собой, по существу, готовые зародыши будущих растений. Основными органами семени являются зародышевый корешок, зародышевый стебелек, зародышевые листки. Однако у голосеменных семя не покрыто плодолистиками. По этой причине их называют голосеменными.

Голосеменные представлены деревьями, кустарниками и лианами. Количество видов составляет около 700. Распространены по всему земному шару. В северном полушарии занимают огромные площади, образуя хвойные леса.

Наиболее известными представителями голосеменных являются сосна, пихта, ель, лиственница. У растения этого отдела тканями ствола и корня являются камбий, ксилема, флоэма. У многих листья представлены «иголками».

Для голосеменных характерно чередование поколений, связанное со сменой гаплоидного и диплоидного состояний, однако у них налицо уменьшение гаметофита. Можжевельник, саговник, туя, ель, сосна, лиственница — это спорофиты. Как и все семенные растения, голосеменные являются разноспоровыми. Органами размножения являются женские и мужские шишки, которые формируются на одном и том же дереве и в которых находится гаметофит.

Образование семени является первым этапом в развитии спорофита. Женские шишки построены из крупных чешуек, называемых мегаспорофиллами, каждая из которых несет по два мегаспорангия на внутренней поверхности, а каждый мегаспорангий в свою очередь содержит мегаспору, которая развивается в многоклеточный гаметофит, содержащий две или три архегонии. Каждая архегония состоит из одиночной большой яйцеклетки и нескольких малых вытянутых клеток. Мегаспорангий покрыт так называемым интегу-ментом. Мегаспорангий с интегументом называют семязачатком.

Мужские шишки несут на внутренней поверхности их чешуи (на микроспорофиллах) по два микроспорангия, содержащих микроспоры, каждая из которых развивается в гаплоидную пыльцу. Пыльцевые гранулы (зерна) составляют мужской гаметофит.

Мегаспорофиллы и микроспорофиллы собраны в мега- и мик-ростробиллы (соответственно) на укороченном спороносном побеге, представляющем собой стебель со спороносными листьями.

Когда пыльца попадает на женские шишки, она проходит в семязачаток, причем каждая пыльцевая гранула развивается в тычиночную трубочку и два спермоядра, а когда тычиночная трубочка проникает в яйцеклетку, происходит слияние спермоядра с ядром яйцеклетки. Это и есть оплодотворение. Диплоидная зигота становится диплоидным зародышем. Со временем внешний инте-гумент семязачатка превращается в оболочку семени, а из остатков мегаспорангия образуется эндосперм. Следовательно, семязачаток превращается в семя. После созревания семена из шишек выпадают наружу.

Хозяйственное значение голосеменных очень большое. Они дают древесину, сырье для медицинской промышленности. Многие виды являются декоративными.

Голосеменные представляют собой очень древнюю группу высших растений. Появившись в девоне (около 350 млн лет назад), голосеменные в конце палеозоя — начале мезозоя заняли место папо-ротниковидных, поскольку оказались более приспособленными к жизни в наземных условиях. Одна их гипотез заключается в том, что голосеменные произошли от древнейших папоротниковидных.

Отдел Покрытосеменные , или Цветковые (Angiospermae, или Magnoliophyta). Растения этого отдела встречаются почти повсеместно. На их долю приходится 250 000-300 000 видов, т. е. почти две трети видов царства растений. В настоящее время они являются самой процветающей группой растений.

В пределах этого отдела различают однодольные и двудольные растения, которые бывают как травянистыми и кустарниковыми видами, так и деревьями. Типичными представителями этого отдела являются рожь, пшеница, роза, береза, осина и другие. Различают однодольные и двудольные покрытосеменные растения.

Для этих растений также характерно чередование поколений, но у них произошло значительное уменьшение гаметофита.

Замечательной особенностью этих растений является наличие у них цветка, который представляет собой видоизмененный побег и является производным спорофита (рис. 11). Именно по этой причине растения, образующие цветки, называют цветковыми. Как правило, цветки обоеполы, но иногда и раздельнополы. В цветке различают пестик и тычинки, которые являются его главными частями. В нижней части пестика (завязи) развиваются семена. По этой причине эти растения получили название покрытосеменных. Нижняя часть пестика представлена завязью, узким столбиком и рыльцем. Что касается тычинок, то каждая из них состоит из тычиночной нити и пыльника.

У обоеполых растений, которые среди покрытосеменных составляют большинство, цветки имеют как пестики, так и тычинки, т. е. эти растения имеют пестичные (женские) и тычиночные (мужские) цветки. Но у многих видов одни цветки имеют только пестики, на другом — только тычинки. Такие растения называют двудомными. Опыление является результатом переноса пыльцы с тычинок на рыльце пестика.

Общая схема репродукции покрытосеменных на рис. 12.

Женский гаметофит цветковых растений состоит из 8 клеток зародышевого мешка, одна из которых является яйцеклеткой. Эта микроскопическая структура развивается из одиночной мегаспоры. Мужской гаметофит развивается из микроспоры, или пыльцевой гранулы, располагающейся в микроспорангии пыльника. Попав на рыльце пестика, пыльцевая гранула в результате деления дает начало генеративной клетке и клетке, развивающейся в пыльцевую трубку. Далее пыльцевая трубка врастает в полость завязи. Ядро трубки генеративной клетки мигрирует к низу пыльцевой трубки, где генеративная клетка делится, давая два спермин. Один из этих спермиев сливается с яйцеклеткой, образуя диплоидную зиготу, тогда как второй спермий сливается с ядром (в центре зародышевого мешка, в семязачатке), давая триплоидное ядро, развивающееся затем в эндосперм. В конечном итоге обе структуры оказываются в семени, а семя оказывается в завязи, которая развивается в плод. Последний может содержать от одного до нескольких семян. Такое оплодотворение называют двойным (рис. 13). Оно было открыто в 1898 г. С. Г. Навашиным (1857—1950). Биологический смысл двойного оплодотворения заключается в том, что развитие триплоидного эндосперма в сочетании с огромным числом поколений обеспечивает экономию пластических и энергетических ресурсов растений.

Оно было открыто в 1898 г. С. Г. Навашиным (1857—1950). Биологический смысл двойного оплодотворения заключается в том, что развитие триплоидного эндосперма в сочетании с огромным числом поколений обеспечивает экономию пластических и энергетических ресурсов растений.

Стебель является органом растений, к которому прикрепляются листья, корни, цветки. (Строение стебля древесного растения показано на рис. 14.)

Листья являются важнейшим органом растений. Они характеризуются разной формой и построены из нескольких слоев клеток, содержащих большое количество хлоропластов. Служат органом газообмена между растениями и средой. Из-за наличия хлорофилла в листьях происходит фотосинтез, основу которого составляют две реакции — фотолиз воды и фиксация COg.

Корень является органом растения, который адсорбирует воду и минеральные вещества из почвы и проводит их к стеблю. У покрытосеменных, как и голосеменных, вода и питательные вещества из почвы адсорбируются корневыми волосками и проводятся в ксилему в результате осмотического давления в корневой системе, действия капилляров, отрицательного давления в ксилеме, доходящего иногда у некоторых древесных форм до 100 бар, и транспирации, т. е. испарения воды из листьев (рис. 15).

Хозяйственное значение покрытосеменных переоценить очень трудно, т. к. они исключительно широко используются в жизни человека (источник продовольствия, сырье для промышленности, корм для животных и т. д.).

Покрытосеменные растения являются господствующими растениями нашей планеты. Поэтому объяснение их происхождения уже давно оказалось одной из самых важных задач в учении об эволюции. Начиная с Ч. Дарвина, для объяснения покрытосеменных растений было выдвинуто несколько гипотез. По одной из них предполагают, что покрытосеменные произошли от каких-то голосеменных, а однодольные происходят от каких-то древних двудольных. Однако эта и другие гипотезы не являются исчерпывающими. Существуют разногласия и в определении времени появления покрытосеменных. По новейшим представлениям главная диверсификация цветковых растений, в том числе разделение на однодольные и двудольные, произошла 130—90 млн лет назад, и это дало тогда начало изменениям земных экосистем.

Вопросы для обсуждения

1. Как вы понимаете различия между доядерными и ядерными организмами?

2. Назовите подцарства доядерных организмов.

3. Что вы знаете об архебактериях и об их свойствах, которых нет у других доядерных организмов?

4. Какова роль бактерий в природе и в жизни человека? Какие морфологические формы бактерий Вы знаете?

5. Перечислите основные свойства грибов. Чем отличаются грибы от лишайников?

6. Каковы сходства и различия между клетками растений и клетками животных?

7. Чем отличаются зеленые водоросли от цианобактерий?

8. Обладают ли водоросли какими-либо признаками, имеющими хозяйственное значение?

9. Какие свойства характерны для высших растений?

10. Что означает у растений чередование поколений и какова его биологическая роль?

11. Существуют ли различия между моховидными и папоротникооб-разными растениями? Существует ли общность в их происхождении?

12. Что вы знаете о происхождении голосеменных растений? Каково их значение в природе и в жизни человека?

13. Почему покрытосеменные имеют такое название?

14. Каково значение цветка?

16. В чем заключается двойное оплодотворение у покрытосеменных?

16. Какое значение в жизни человека имеют покрытосеменные?

17. Что вы знаете о происхождении покрытосеменных растений?

Литература

Грин Н., Стаут У.. Тейлор Д. Биология. М.: Мир. 1996. 368 стр.

Нидон К., Петерман И., Шеффель П., Шайба Б. Растения и животные. М.: Мир. 1991. 260 стр.

Старостин Б. А. Ботаника. В кн. «История биологии». М.: Наука. 1975. 52-77.

Яковлев Г. П., Челомбитько В. А. Ботаника. М.: Высшая школа. 1990. 367 стр.

Rosemweig М. L. Species Diversity in Space and Time. Cambridge University Press. 1995. 436 pp.

Глава III

РАЗНООБРАЗИЕ ЖИВОТНЫХ

В соответствии с наиболее распространенной классификацией царство животных подразделяют на подцарства Одноклеточные (Monocytozoa), или Простейшие (Protozoa), и Многоклеточные (Metazoa). Многоклеточные подразделяют на животных, не имеющих настоящих органов и тканей (Parazoa), и на настоящих многоклеточных животных (Eumetazoa). Примером первых являются губки, примером вторых — все остальные многоклеточные животные (остальные типы животных). Наконец, животных подразделяют на беспозвоночных и позвоночных. К беспозвоночным относят животных, не имеющих типичного скелета, к позвоночным — животных, имеющих скелет. Важно заметить, что эти подразделения не основаны на естественной системе классификации, но они имеют практическое значение, отражая общие черты организации живого мира.

Все животные, за исключением простейших, являются многоклеточными гетеротрофными организмами, способными к движению. Для них (кроме губок) характерна координация частей тела с помощью нервной системы.

Поскольку зоологи по-разному понимают систематический ранг различных таксонов, то в настоящее время трудно назвать подлинное количество типов в каждом подцарстве. В большинстве случаев все же считают, что количество типов животных составляет не менее 35, тогда как количество классов приближается к 100.

§ 6 Подцарство простейшие ( PROTOZOA)

Простейшие — это одноклеточные организмы животной природы, хотя часто к ним относят и некоторые одноклеточные формы, подобные по своим свойствам растениям и называемые фитофлагеллятами. Примером таких организмов является эвглена зеленая (Euglena viridis). В пределах этого подцарства известно свыше 25 000 видов, большинство из которых обитает в пресных и соленых водах, в почве. Около 3500 видов являются паразитами растений, животных и человека, заселяя их клетки, ткани и полости тела.

Строение простейших в принципе сходно со строением клеток многоклеточных организмов. Однако для них характерны специфические отличия, определяемые тем, что любой представитель простейших не только является клеткой, но и представляет собой самостоятельный организм.

Форма тела простейших является овальной или вытянутой, а размеры в большинстве случаев микроскопические (3-150 мкм), хотя встречаются и более крупные формы.

Типичные простейшие покрыты трехслойной мембраной, толщина которой варьирует у организмов разных видов. Каждый слой мембраны построен в основном из белков. Отдельные простейшие (раковинные корненожки) имеют наружный цитоскелет в виде раковины.

Цитоплазма дифференцирована на экто- и эндоплазму. Эктоплазма является уплотненным образованием, из которого образуется периферическая пленка, называемая пелликулой. Эндоплазма имеет более рыхлую структуру.

Для простейших характерно наличие органелл (органоидов) двух типов — общего назначения и специальных.

Органеллами общего назначения являются ядро, митохондрии, рибосомы, центриоли, комплекс Гольджи, лизосомы и др. Наиболее крупные простейшие — многоядерны, мелкие — одноядерны. Ядро окружено двойной мембраной. Количество хромосом различно у организмов разных видов и колеблется в пределах от двух (вероятно, гаплоидное число) до более чем 160. Длина хромосом составляет 1—50 мкм.

Органеллами специального назначения являются органеллы движения, а также пищеварительные и сократительные вакуоли. Органеллы движения (локомоторные структуры) представлены псевдоподиями (ложноножками), жгутиками, или ресничками. Например, движение амебоидных организмов основано на движении цитоплазмы. Эктоплазма давит на эндоплазму, в результате чего цитоплазма перетекает в другой участок тела, где образуются псевдоподии, с помощью которых организмы передвигаются в разных направлениях. Жгутики построены из скрученных фибрилл (нитей), основания которых формируют особую гранулу (базальное тельце), называемую блефаропластом (кинетосомой). У свободноживущих простейших жгутики действуют в качестве «винтов», позволяющих вращение тела вокруг оси. Реснички имеют фибриллярную структуру.

Питание простейших характеризуется значительным разнообразием в способах поглощения пищи. Одни из них воспринимают пищу из растворов всем телом посредством пиноцитоза, другие поглощают твердую пищу через цитостом (клеточный рот), третьи захватывают пищу псевдоподиями. Пища, поступающая в эндоплазму, переваривается в специализированных вакуолях, содержащих пищеварительные ферменты. Частицы пищи, остающиеся непереваренными, выбрасываются в среду вместе с пищеварительной вакуолью.

Многие водные простейшие обладают одной или более сократительной вакуолью, которая у них обеспечивает постоянство осмотического давления, а также снабжение кислородом с помощью поступающей и затем выбрасываемой воды.

Как показало культивирование простейших, они нуждаются в минеральном питании, а также в факторах роста (витамин В^д, ти-амин, биотин, рибофлавин, никотиновая кислота, пиридоксин, фо-лиевая и пантотеновая кислоты и др.). Некоторые простейшие нуждаются в стероидах.

Часть простейших, сходных с растениями, имеет хроматофоры, в которых происходит фотосинтез. Из-за содержания хлорофилла и запасных пигментов хроматофоры по цвету могут быть зелеными, желтыми, красными, коричневыми и даже голубыми. Пищевые потребности простейших с хроматофорами и без хроматофоров упрощены по сравнению с простейшими животной природы.

Энергию большинство простейших получают в результате окисления органических соединений (углеводов, жирных кислот). В отличие от бактерий они не способны к использованию неорганических веществ в качестве главного источника энергии.

Размножение простейших происходит как бесполым, так и половым путем. Бесполое размножение заключается в делении организма на две половины, причем ему предшествует деление ядра. Иногда деление тела и деление ядра происходят одновременно. Размножение половым путем осуществляется с помощью синга-мии (слияния двух гамет), конъюгации (обмена гаметическими ядрами) и аутогамии, заключающейся в формировании гаплоид-ных ядер и слияния их в синкарионы. Некоторые простейшие размножаются одновременно бесполым и половым путем. Например, в размножении малярийных плазмодиев бесполая фаза встречается, когда они находятся в организме позвоночных, половая, когда находятся в организме комаров. Установлено, что Euplotes raikovi продуцирует ферромоны полипептидной природы, которые индуцируют как половое, так и вегетативное размножение простейших этого вида.

Принципиальной особенностью простейших является прохождение ими циклов развития. Различают простые и сложные циклы развития. Простым циклом развития является такой цикл, в котором имеется лишь одна (вегетативная) стадия. Напротив, сложные циклы развития связаны с развитием простейших в разных тканях и органах, причем, принадлежащих разным организмам-хозяевам.

Простейшие способны к раздражимости, т. е. к ответным реакциям на воздействие различных факторов. В частности, одной из важнейших форм раздражимости простейших является способность к превращению их вегетативных форм при неблагоприятных условиях в цисты, что называют инцистированием. Благодаря инцистированию простейшие способны выживать в самых неблагоприятных условиях (высыхание среды, появление в ней вредных веществ, изменение температуры и др.) в течение времени, измеряемого годами. При попадании в благоприятные условия цисты развиваются в активные вегетативные формы (трофозоиты). Таким образом, инцистирование способствует распространению простейших, попаданию их в новые экологические ниши.

Большинство простейших являются свободноживущими. Известны также простейшие, которые могут обитать в организме другого вида, не принося ему ущерба, а даже помогая ему. Например, некоторые жгутиконосцы, обитающие в кишечнике термитов, могут переваривать там целлюлозу и этим обеспечивают пищевые потребности термитов, поскольку последние самостоятельно не утилизируют это соединение. Однако значительная часть простейших ведет паразитический образ жизни, причем отдельные паразиты очень опасны для человека и животных. Человек является потенциальным хозяином около 25 видов простейших, из которых 2 вида могут обитать в полости рта, 12 видов — в кишечнике, 1 — в мочеполовом тракте, около 10 — в крови и других тканях.

Простейших классифицируют на основе способов их движения (строения локомоторных органов) и особенностей размножения на пять типов, а именно: Саркомастигофоры (Sarcomastigophora), Споровики (Sporozoa), Книдоспоридии (Cnidosporidia), Микроспоридии (Microspora) и Ресничные, или Инфузории (Infusoria).

Тип Саркомастигофоры ( Sarcomastigophora ). Этот тип представлен наиболее примитивными организмами среди всех простейших. Общими свойствами организмов этого типа являются наличие у них одного ядра и способность образовывать в результате переливания цитоплазмы псевдоподии (ложноножки), которые служат для передвижения и захвата пищи, или жгутики. Насчитывают около 18 000 видов.

Саркомастигофоры являются обитателями в основном соленых (морских) вод, однако живут также и в пресной воде, во влажной почве. Многие паразитируют в организме животных и человека.

В составе типа Саркомастигофоры классифицируют два подтипа — Саркодовые (Sarcodina) и Жгутиконосцы (Mastigophora).

Подтип Саркодовые (Sarcodina). Типичными представителями Саркодовых являются пресноводная амеба (Amoeba proteus, рис. 16) и дизентерийная амеба (Entamoeba histolytica). Пресноводная амеба обитает в лужах, прудах. В ее цитоплазме различают два слоя — эктоплазму и эндоплазму. Содержит одно ядро. Передвигается с помощью псевдоподий. Размножается бесполым путем (делением). Способна к инцистированию в неблагоприятных условиях. Другими известными свободноживущими Саркодовыми являются пресноводные раковинные корненожки и фораминиферы, обитающие в морях.

Дизентерийная амеба является паразитом человека. Для нее характерен сложный цикл развития. Человек заражается в результате заглатывания с загрязненными продуктами цист этого организма. Болезнь, вызываемая этим паразитом, носит название амебиаза.

Подтип Жгутиконосцы (Mastigophora). Эти организмы обитают в морских и пресных водах или ведут паразитический образ жизни в организме растений и животных, принадлежащих к разным систематическим группам, а также в организме человека. Насчитывают около 8000 видов.

Жгутиконосцы имеют овальную, шаровидную или вытянутую форму (рис. 17). Размеры микроскопические. Тело покрыто двойной мембраной, на внешней поверхности которой имеется тонкая пелликула. В цитоплазме располагается одно или несколько сходных ядер.

Для организмов, классифицируемых в пределах этого подтипа, характерно наличие одного или более жгутиков. Каждый жгутик состоит из фибрилл и прикрепляется к базальному тельцу (блафа-ропласту или кинетосоме), располагающемуся в эктоплазме.

Большинство органелл общего назначения (митохондрии, микросомы, комплекс Гольджи и др.) сравнимы по морфологии и функциям с такими же органеллами клеток высших растений и животных, включая сходство на субмикроскопическом уровне. Центриоли у многих жгутиковых играют важную роль в организации не только митотического аппарата, но и являются локусом, вокруг которого формируются набор органелл, образованных в основном фибриллярными белками (жгутик, аксостиль и др.). Среди организмов этого подтипа различают свободноживущих (Е. viridis) и паразитов, для которых характерны сложные циклы развития. Наиболее известными паразитами человека являются три-паносомы (Trypanosoma brucei gambiense и Т. brucei rhodesiense), которые вызывают трипаносомоз (африканскую сонную болезнь), лейшмании (Leishmania tropica major, L. tropica minor и L. donovani), которые вызывают лейшманиоз, трихомонады (Trichomonas vaginalis), вызывающие трихомоноз, и лямблии (Lamblia intestinalis), вызывающие лямблиоз.

Саркомастигофоры представляют собой группу древнейших орга-низмов-эукариотов.

Тип Споровики ( Sporozoa ). Организмы этого типа характеризуются простотой организации. Они не имеют органоидов пищеварения и выделения. Питание, дыхание и выделение обеспечиваются всей поверхностью их тела. Все споровики являются внутриклеточными паразитами. Насчитывают около 20 000 видов. Все они являются паразитами животных многих систематических групп. Среди них наиболее известными паразитами являются возбудители малярии (Plasmodium falciparum, P. vivax, P. ovale, P. malariae) и токсоплазмоза (Toxoplasma gondii).

Особенностью споровиков является то, что для них характерны сложные циклы развития, происхождение которых связано с образованием спор и сменой хозяев. Например, у малярийных плазмодиев жизненный цикл связан с чередованием бесполого и полового размножения (рис. 18). В организме человека плазмодии размножаются бесполым путем с образованием промежуточных форм в виде мерозоитов, шизонтов и гамонтов. Лихорадка и повышение температуры связаны с тем, что, размножаясь в эритроцитах, шизонты разрушают их. Время генерации паразита (шизогонии) для Р. falciparum, P. vivax, Р. ovale составляет 48 часов, а для Р. malariae — 72 часа, в результате чего в первом случае у больных имеет место 2-дневная, а во втором — 3-дневная лихорадка.

Половое размножение малярийных плазмодиев происходит в организме комара и связано с развитием там гамонтов и превращением последних в гаметы, которые сливаются и дают начало диплоидным зиготам. Когда вокруг зигот появляется мембрана, то это сопровождается их инцистированием, т. е. образованием ооцист (ооки-нет). Ооцисты подвергаются затем мейотическому делению, т. е. спорогонии, в результате которой внутри ооцист формируются гаплоид-ные спорозоиты. Являясь инвазионной формой, последние при питании комара на коже человека попадают в его кровь и цикл развития начинается сначала.

Возбудитель токсоплазмоза (Т. gondii), которым болеют человек и животные, также характеризуется сложным циклом развития. Часть цикла токсоплазм проходит в организме кошки, часть — в организме другого млекопитающего, а — часть в организме человека. Человек заражается ооцистами возбудителя при разделке туш животных, а цистами — при употреблении в пищу недостаточно прожаренного или проваренного мяса.

Эволюция споровиков не совсем понятна. Тем не менее предполагают, что они берут начало от жгутиконосцев.

Тип Книдоспоридии ( Cnidosporidia ). Этот тип представлен более 1000 видами, представители которых распространены в пресных и соленых водоемах.

Все книдоспоридии ведут паразитический образ жизни, поражая исключительно пресноводных и морских рыб и вызывая у них миксоспоридиозы. Миксоспоридиоз лососевых (форель, лосось) известен под названием «вертежа».

Предполагают, что книдоспоридии произошли от саркодовых.

Тип Микроспоридии ( Microsporidia ). Организмы этого типа являются паразитами как позвоночных, так и беспозвоночных. Насчитывают свыше 300 видов.

Микроспоридии ведут внутриклеточный паразитический образ жизни. Наиболее известными микроспоридиями являются Nosema apis и Nosema bombycis, которые вызывают белый понос у медоносных пчел и пебрину у тутового шелкопряда (соответственно). Микроспоридии вызывают также болезни рыб (корюшки, снетка).

Предполагают, что микроспоридии также произошли от сарко-довых.

Тип Инфузории ( Infusoria ). В составе этого типа насчитывают около 6000 видов. Являются обитателями очень многих экологических ниш.

Различают свободноживущих и паразитирующих инфузорий. Наиболее известным свободноживущим организмом является парамеция, или туфелька (Paramecium caudatum). Форма тела этого организма вытянута, но постоянна (рис. 19), т. к. снаружи окружена плотной пелликулой, а внутри (в экто- и эндоплазме) имеются к тому же и выполняющие роль опорного скелета нити. Имеются также два ядра (макронуклеус и микронуклеус). Реснички, покрывающие тело, имеют базальные гранулы. Для парамеций характерна цитологическая специализация (наличие предротово-го углубления — перистома клеточного рта, глотки, ануса и трихоциста). Размножаются как бесполым (деление), так и половым путем в виде конъюгации (рис. 20).

Патогенным представителем этого типа является балантидий (Balantidium coli), вызывающий у человека балантидиоз. Человек инвазируется цистами баланти-дия в результате приема зараженной им пищи и воды, а также пользования загрязненными предметами.

Известны инфузории, часть цикла которых является паразитической, часть — свободно-живущей. Такой инфузорией является ихтиафтириус, паразитирующий в организме рыб.

Инфузории — наиболее организованные существа среди простейших. Они являются также процветающей группой среди животных этого подцарства.

Простейшие являются древнейшими обитателями Земли. Предполагая родство между Capкодовыми и Жгутиковыми, многие протистологи считают, что архетипами современных простейших являются Саркодовые.

Однако в объяснениях эволюции простейших много противоречий, поскольку существует мнение и о том, что саркодовые и жгутиконосцы произошли от разных предков, каких-то самых древних живых существ. Большое значение придается ароморфозам, примером которых является развитие ресничного и ядерного аппаратов у инфузорий, и идиоадаптациям в виде приспособлений к планктонному образу жизни или инцистированию у ряда простейших. В любом случае считают, что самой прогрессивной формой в мире простейших являются инфузории.

§ 7 Подцарство многоклеточные ( METAZOA)

Тип Губки ( Spongia ). Этот тип представлен наиболее примитивными многоклеточными организмами, клетки которых, однако, дифференцированы (рис. 21). Известно около 3000 видов губок. Будучи обитателями морей, ведут неподвижный образ жизни на дне или на различных подводных предметах.

Губки — это колониальные организмы. Для них характерны разнообразная форма, мягкое и эластичное тело, пронизанное порами, в которые поступает вода, различная окраска. Имеют внутренний скелет (известковый, кремневый или роговой). Имеют также центральную (гастральную) полость.

Для дыхания используют растворенный в воде кислород. Питаются органическими остатками растений и животных, а также простейшими и бактериями. Новые исследования показали, что морские губки способны поглощать и растворять мелкие кварцевые частицы, что связывают с потребностью губок в аскорбиновой кислоте. Эта способность является уникальной в мире животных.

Для губок характерны бесполое размножение (почкование), а также половая дифференциация и половое размножение.

Отдельные виды губок ядовиты для человека. Известны губки, используемые в хозяйственной деятельности человека (туалетные губки, бодяги, стеклянные губки).

Происхождение губок не совсем ясно. Предполагают, что они являются слепой ветвью эволюции.

Тип Кишечнополостные ( Coelenterata ). Организмы этого типа являются обитателями в основном морей, но они проникли и в пресные воды. Известно около 9000 видов. Кишечнополостным присуща довольно простая организация. Для них характерна радиально-осевая симметрия. Их тело состоит из экто- и энтодермы, между которыми находится мезоглея, представляющая собой слой неклеточного вещества.

Типичными представителями, обитающими в морских водах, являются коралловые полипы (рис. 22), ведущие неподвижный образ жизни, образуя часто колонии, и медузы, одиночные организмы, ведущие подвижный образ жизни (плавающие). Наиболее известным пресноводным представителем кишечнополостных является гидра.

Размножаются бесполым и половым путем.

Кишечнополостные склонны к образованию симбиотических отношений в форме комменсализма, мутуализма, паразитизма с другими морскими организмами.

Кишечнополостные имеют важное значение в природе. Они являются участниками многих морских экологических систем. Образуя колонии, коралловые полипы формируют рифы, коралловые острова.

Кишечнополостные — самые древние многоклеточные животные, процветающие в современную эпоху. Они встречались еще в докембрии. Входят в основной ствол эволюции. Предполагают, что их предками были когда-то примитивные многоклеточные животные, для которых характерен был свободноплавающий образ жизни.

Тип Плоские черви ( Plathelminthes ). К этому типу относят животных, характеризующихся вытянутой уплощенной билатерально-симметричной формой и обитающих в воде, почве, организме растений, животных и человека. Они составляют один из наиболее больших по численности типов животных (около 9000 видов).

Размеры плоских червей в длину чрезвычайно варьируются — от 0,5 мм до 30 м. У одних плоских червей поверхностный (покровный) эпителий снабжен ресничками или даже жгутиками, у других он характеризуется тем, что ядра и цитоплазма смещаются в глубь тела, формируя так называемый погружной эпителий (тегумент). Покровный эпителий и располагающаяся под ним кожная мускулатура формируют кожно-мускульный мешок. Пространство между мешком и внутренними органами заполнено паренхимой, являющейся производной мезодермы. Пищеварительная система у некоторых плоских червей представлена ротовым отверстием, глоткой, пищеводом и кишкой, а у некоторых (у ленточных) ее совсем нет. Все плоские черви гермафродиты.

Плоские черви являются первичноротыми животными. Они характеризуются также отсутствием метамерии, скелетной, сосудистой и дыхательной систем.

Среди гельминтов, принадлежащих к этому типу, широко распространен паразитизм. В пределах типа прослеживаются группы (таксоны), представители которых обладают чертами постепенного перехода от свободноживущих к паразитическим формам. Это проявляется в том, что органы, которые наиболее активно функционируют у свободноживущих, подвергаются прогрессивной редукции вплоть до полного исчезновения у паразитов. В частности, у паразитов отмечается инактивация и атрофия сенсорных и локомоторных органов. С развитием в условиях паразитизма способности к адсорбции пищи поверхностью тела подвергается регрессии али-ментарный тракт. В связи с этим у ленточных гельминтов уже нет следов пищеварительной системы.

Общий уровень метаболизма у паразитических видов существенно не изменен. Однако, живя в кишечнике животных или человека, где количество кислорода ограничено, многие плоские черви развили анаэробный тип дыхания, при котором кислород они получают путем восстановления углеводов (по типу брожения).

Нервная система характеризуется по сравнению с кишечнопо-лостными значительным усложнением. У ленточных гельминтов в головной части тела имеется парный мозговой ганглий или окологлоточное нервное кольцо и отходящие от них нервные стволы, сформированные нервными клетками.

У паразитических форм неподвижный образ жизни и обилие пищи нашли отражение в их гигантской репродуктивной способности, которая компенсирует потери при переходе паразита от одного хозяина к другому.

Для плоских червей характерно развитие с неполным метаморфозом. Их личиночные стадии являются мелкими организмами, не способными к восприятию пищи, а также с ограниченной локомоторной способностью и временем жизни. У некоторых видов лишь один экземпляр на 1 млн особей является удачливым в переживании. Поэтому переживание паразитических видов обеспечивается, возможно, лишь их гигантской репродуктивной способностью.

Тип делят на три класса: Ресничные, или Турбеллярии (Turbellaria), Сосальщики, или Трематоды (Trematoda) и Ленточные (Cestoda).

Ресничные , или Турбеллярии (Turbellaria) являются наиболее примитивными плоскими гельминтами. Их размеры в длину составляют около 5 мм. Известно примерно 3000 видов турбеллярий. Они являются обитателями в основном пресных и солоноватых вод. Ведут свободный образ жизни. Наиболее известным представителем животных этого класса является планария. Однако многие турбеллярий паразитируют в организме морских ракообразных, рыб и других животных.

Турбеллярии не имеют ни хозяйственного, ни какого-либо другого выраженного значения, если не принимать во внимание их использования в качестве экспериментальной модели в некоторых медико-биологических исследованиях.

Трематоды (Trematoda) представлены примерно 6000 видов, все из которых являются паразитами животных и человека. Для трематод характерно непрямое развитие, причем их жизненные циклы довольно сложны и связаны со сменой хозяев. По этой причине их называют биогельминтами. Циклы развития связаны с циркуляцией в организме постоянных хозяев (дефинитивных, окончательных) мариты (взрослой формы) и в организме промежуточных хозяев личиночных форм (рис. 23). Дефинитивными хозяевами трематод являются человек и другие животные.

В качестве патогенных видов этого класса являются печеночный, кошачий и ланцетовидный сосальщики, клонорхис (Fasciola hepatica, Opisthorchorchis felineus, Dicrocoelium lanceatum, Clonorchis sinensis соответственно) и другие.

Ленточные (Cestoda) черви являются паразитами млекопитающих и человека. В этом классе насчитывают более 3000 видов гельминтов.

Наиболее известными видами являются цепень вооруженный (Taenia solium рис. 24), цепень невооруженный (Taeniarhynchus saginatis), эхинококк (Echinococcus granulosus), лентец широкий (Diphyllobothrium latum) и др.

Ленточные гельминты также являются биогельминтами, т. к. их жизненные циклы проходят со сменой разных хозяев(рис. 25).

Предполагают, что плоские черви произошли либо от древних кишечно-полостных, либо от предков, общих с древними кишечнополостными. Что касается происхождения червей, принадлежащих к разным классам, то предполагают, что они возникли в результате дивергенции предковых форм и адаптации образовавшихся форм к разным экологическим нишам. В частности, ресничные черви произошли либо от гребневиков, либо от бескишечных предковых форм, перешедших к ползанию. Сосальщики произошли от ресничных червей, перешедших к паразитическому образу жизни. В соответствии с одной из гипотез ленточные черви произошли тоже от ресничных, но в процессе паразитизма у них развились органы фиксации, подверглась интенсивному развитию половая система. По другой гипотезе ленточные черви произошли от древних трематод.

Тип Круглые черви ( Nema - thelminthes ). Круглые черви характеризуются удлиненным цилиндрическим телом, не имеющим сегментации и ресничек на поверхности. Насчитывают более 10 000 видов этих организмов. Они адаптированы к жизни почти во всех экологических нишах, многие из них являются паразитами растений, животных и человека.

Круглые черви характеризуются трехслойностью, билатеральной симметрией, наличием первичной полости тела и кожно-мус-кульного мешка. Помимо круглой формы, типичным для гельминтов этого типа является наличие мышечной, пищеварительной, выделительной, нервной и половой систем, для которых характерны дальнейшие прогрессивные изменения. Например, у этих червей отмечается раздельнополость, а для свободноживущих форм характерно очень большое разнообразие в половом размножении. Для пищеварительной системы характерно наличие анального отверстия. Кровеносная и дыхательная системы отсутствуют.

Круглые черви доступны для культивирования в лабораторных условиях.

Среди круглых гельминтов встречаются как свободноживущие, так и паразитические формы. Многие паразитические формы являются геогельминтами, т. к. развиваются обычно в одном хозяине. Известны среди них также и биогельминты.

Тип Круглые черви классифицируют на несколько классов, из которых наибольшее распространение и значение имеет класс Собственно круглые черви (Nematoda).

Среди паразитических нематод наиболее известными являются аскарида человеческая (Ascaris lumbricoides, рис. 26), угрица кишечная (Strongyloides stercoralis), кривоголовка (Ancylostoma duodenale), трихинелла (Trichinella spiralis) и другие, которые вызывают у человека аскаридоз, стронгилоидоз, анкилостоматоз, трихинеллез (соответственно).



Происхождение круглых червей до конца не выяснено. Тем не менее многие гельминтологи считают, что они произошли от тур-беллярий и развились в обособленную эволюционную ветвь филогенетического древа, животного мира.

В эволюции круглых червей важную роль играли ароморфо-зы, в частности, большое значение имело появление первичной полости тела, образованной по принципу «трубка в трубке» с отверстиями на обоих концах. Ароморфозами являются также прогрессивное развитие пищеварительной системы, появление раздельнополости и живорождения (у некоторых видов). Предполагают, что в эволюции этих организмов существенную роль играли гены кластера Нох, которые аналогичны генам Нох членистоногих.

Тип Кольчатые черви ( Annelides ). Кольчатые черви, или кольчецы — это высокоорганизованные гельминты, являющиеся обитателями пресных и морских водоемов, почвы и других сред. Насчитывают около 10 000 видов этих животных. Их длина составляет от долей миллиметра до 2,5 м. Характеризуются прежде всего метамерией, заключающейся в разделении их тела внутренними перегородками на сегменты, которые функционально практически самостоятельны. Тело дифференцировано на головную часть, среднюю часть и анальный район.

Для кольчецов характерны билатеральная симметрия, трехслой-ность, вторичная (целомическая) полость тела, кожно-мускульный мешок, наличие пищеварительной, дыхательной, кровеносной, нервной и половой систем, а также органов движения (параподий) в каждом сегменте. Кольчатые черви построены таким образом, что внешняя трубка, или стенка их тела, отделена от внутренней трубки пищеварительного канала целомическим пространством.

Кольчатые черви имеют значение в круговороте веществ в природе, служат пищей рыб, в том числе и промысловых. Земляные черви способствуют рыхлению почвы и обогащению ее органическими веществами. Они улучшают также водный и газовый баланс почвы.

В медицинской практике значение имеет обитающая в неглубоких пресных водоемах медицинская пиявка (Hirudo medicinalis), которую давно используют в лечении гипертонии, повышенной свертываемости крови, тромбозов и других болезней.

Представления о происхождении кольчатых червей противоречивы. Одни гельминтологи предполагают, что они произошли от турбеллярий, другие — от форм, родственных с гребневиками. В любом случае можно считать, что происхождение кольчецов связано с крупными ароморфозами в виде появления метамерии, пе-лома, кровеносной и дыхательной систем, усложнения выделительной и нервной систем. Предполагают, что пиявки произошли от малощетинковых червей или от их предков.

Кольчатые черви связаны филогенетически с членистоногими и мягкотелыми, поэтому они являются узлом в родословном древе животного мира.

Тип Членистоногие ( Arthropoda ). Членистоногие — это высший тип беспозвоночных животных. В его состав входит около 650 000 видов, основная часть которых приходится на насекомых. По количеству видов он является самым процветающим типом в мире животных. Членистоногие распространены во всех средах обитания, являясь существенным компонентом всех экологических систем.

Для членистоногих характерна билатеральная симметрия. Как и кольчатые гельминты, они имеют вторичную полость тела. У большинства членистоногих тело сегментировано на три отдела — голову, грудь, брюшко. В голове сконцентрированы сенсорные органы и внешние нервные центры. К голове часто примыкают грудные сегменты, в результате чего образуется головогрудь. Имеются членистые конечности, выполняющие роль органов передвижения, чувств, нападения и т. д.

Для членистоногих характерны также трехслойность, наличие внешнего скелета в виде хитинизированной кутикулы, а также пищеварительной, дыхательной, выделительной, кровеносной, нервной, эндокринной и половой систем, характеризующихся дальнейшим усовершенствованием.

Пищеварительная система разделена на передний, средний и задний отделы. В среднем отделе расположены пищеварительные железы (зачатки). Ротовой аппарат составлен передними конечностями (тремя парами).

Дыхательная система у водных членистоногих представлена жабрами, с помощью которых используется кислород, растворенный в воде, а у наземных организмов — легочными мешками или трахеями (паукообразных и трахейнодышащих), позволяющими использовать кислород атмосферы.

Кровеносная система состоит из дорсального сосуда, представляющего собой сердце и аорту. Она незамкнута. Сердце построено из мышечных клеток. Аналогом крови является гемолимфа, которая в основном выполняет транспортную функцию, а также обеспечивает хранение воды и поддержание пищевых запасов.

Выделительная система характеризуется значительным разнообразием, будучи представленной видоизмененными метанефридиями.

Нервная система характеризуется повышающейся концентрацией ганглиев (по сравнению с кольчатыми червями) и состоит из парного надглоточного и подглоточного ганглиев, а также из брюшной нервной цепочки, составленной парными ганглиями каждого сегмента. Нервная система обеспечивает сложные двигательные и поведенческие реакции.

Половая система и репродуктивный процесс членистоногих характеризуются такж,е большим разнообразием. Большинство членистоногих раздельнополо, но встречаются и гермафродиты, главным образом среди ракообразных. Среди насекомых довольно обычен партеногенез, хотя нормальная половая репродукция в определенные интервалы встречается даже среди партеногенетических видов. У большинства членистоногих мужские половые клетки переносятся в полость брюшка самок, где позднее они оплодотворяют яйцеклетки. Организмы многих видов развиваются с метаморфозами.

Рост членистоногих характеризуется периодичностью, т. к. происходит во время линек, каждая из которых контролируется гормонально.

Классификация членистоногих очень сложна, поскольку среди них существует много филогенетических линий. Однако в рамках одной из классификаций их классифицируют на три подтипа: Жаберноды-шащие (Branchiata) с классом Ракообразные (Crustacea), Хелицеровые (Chelicerata) с классами Меристомовые и Паукообразные (Arachnoidea) и Трахейнодышащие (Tracheata) с классами Многоножки (Myriapoda) и Насекомые (Insecta).

Наиболее известным представителем жабернодышащих является речной рак. Представителями хелицеровых являются фаланги, скорпионы (рис. 27), пауки, клещи, трахейнодышащих — насекомые, включая блох, клопов, вшей (рис. 28), двукрылых (рис. 29) и других организмов.

Значение членистоногих в природе исключительно велико. Они являются компонентами всех экологических систем. Многие из них играют очень важную роль в патологии человека, являясь паразитами, переносчиками или хозяевами паразитов (возбудителей болезней), а некоторые являются ядовитыми животными, многие известны в качестве вредителей полей, садов и огородов.

Считают, что членистоногие возникли в докембрии и берут начало от примитивных кольчатых червей, причем в их эволюции существенное значение имели ароморфозы, которые привели к развитию гетерономной метамерии, плотных хитинизированных покровов, членистого строения конечностей, крыльев у насекомых, мышечной системы, сердца, внутреннего оплодотворения, более совершенной нервной системы. Как показали современные исследования, развитие этих свойств происходит под контролем кластера генов Нох, которые идентифицированы у всех исследованных к настоящему времени членистоногих. Поэтому предполагают, что гены Нох были вовлечены в эволюцию членистоногих.

Предполагают также, что важное значение в эволюции членистоногих имело развитие плотного наружного скелета, предупреждающего высыхание животных. Кроме того, развитие членистых конечностей обеспечило устойчивость животных к обитанию в разных средах. Наконец, эволюция лимитировала размеры наземных членистоногих, а естественный отбор закрепил в качестве абсолютно необходимой линьку, обеспечивающую изменение форм и размеров животных, замену их покровов (кутикулы) в процессе развития.

Считают, что прародиной жаберно дышащих является море, а хелицеровых — мелководье морей. Трахейнодышащие возникли на суше.

Тип Мягкотелые ( Mollusca ). Мягкотелые являются вторым по численности типом после членистоногих (около 80 000 видов). Большинство этих животных обитают в соленых и пресных

Моллюски чрезвычайно полиморфны. Размеры тела взрослых форм колеблются от 1 мм до 17 метров. Для них характерна билатеральная симметрия, но смещение органов очень часто искажает ее. Их тело сегментировано, не имеет конечностей и покрыто раковиной. Характерно разнообразие форм раковин (рис. 30)

У некоторых видов раковина распространяется лишь на часть тела, которое покрыто кожной складкой — мантией. Полость тела представлена в основном гемоцелью. Мягкотелые обладают всеми основными системами органов, формирующимися из экто-, эндо- и мезодермы.

Пищеварительная система представлена извитой трубкой. Дыхательная система представлена кожны- ми жабрами, которые расположены под кож-ной мантией. Кровеносная система не замкнута. Сердце состоит из желудочка и одного-двух предсердий. Кровь содержит гемоцианин, иногда гемоглобин.

Нервная система представлена 5 парами ганглиев, что делает ее еще примитивней.

Многие моллюски раздельнополые и яйцек ладущие, но встречаются виды-гермафродиты,

В составе типа Моллюски классифицируют пять классов.

Некоторые из этих животных имеют промысловое значение (устрицы, мидии, морские гребешки, осьминоги и другие). Отдельные представители этого типа имеют медицинское значение, т. к. являются промежуточными хозяевами патогенных трематод (ланцетовидного сосальщика, фас-циолы, описторхиса, шистосом).

Палеонтологические данные свидетельствуют о том, что самые ранние моллюски уже существовали в каменноугольном периоде. Считают, что моллюски родственны кольчатым червям и берут начало от предков, общих с членистоногими.

Тип Иглокожие ( Echinodermata ). Иглокожие представлены 6000 видов животных, являющихся обитателями морей и океанов. Среди них наиболее известными являются морские ежи, морские звезды, голотурии и др. (рис. 31).

Для иглокожих характерны радиальная симметрия (личинки — билатерально симметричны), трехслойность, образование вторичного рта в период зародышевого развития, вследствие чего их называют вторичноротыми. Для них характерны также выраженный целом, наличие в коже соединительной ткани и эпидермиса, скелет мезодермального происхождения. Исключительно важным признаком этих животных является наличие у них так называемой амбулакральной системы, которая представляет собой полости, наполненные жидкостью и используемые для движения.

Кожный покров иглокожих состоит из слоя соединительной ткани и слоя эпидермиса, скелет — из известковых пластинок.

Пищеварительная система представлена кишечной трубкой. В переваривании пищи принимают участие ферменты.

Дыхательная система представлена кожными жабрами. Кровеносная система не замкнута. «Кровью» является морская вода, с помощью которой транспортируются питательные вещества в разные участки тела.

Нервная система очень примитивна, ганглии отсутствуют.

Развитие происходит с метаморфозами. В противоположность всем беспозвоночным, которые являются первичноротыми организмами (Protostomia), иглокожие являются вторичноротыми (Deutorostomia) животными, поскольку первичный рот (бластопор) в стадии гастру-лы превращается в анальное отверстие, а новый (вторичный) рот образуется на брюшной стороне.

Иглокожих классифицируют на несколько классов.

Иглокожие не имеют существенного хозяйственного интереса, хотя некоторых из них используют в пищу (трепанги, мидии и другие).

Иглокожие — очень древние животные. Предполагают, что они родственны хордовым и произошли от древнейших вторичноротых форм, родственных с гребневиками, но в своем развитии остановились на начальных этапах эволюции, вторично приобретя радиальную симметрию.

Тип Хордовые ( Chordata ). Хордовые являются главным типом животного царства. В этом типе насчитывают более 42 000 видов, обитающих в разных средах.

Для хордовых характерен ряд специфических свойств. В частности, для них характерно наличие хорды (нотохорды), представляющей собой гибкую структуру стержневидной формы, тянущуюся вдоль тела в положении, занимаемом у позвоночных позвоночником.

Хорда является осевым скелетом. Состоя из вакуолизирован-ных клеток, она сохраняется всю жизнь лишь у низших организмов, но у высших в ходе развития замещается позвонками.

Для хордовых характерно также наличие нервного пучка в виде трубки над хордой и пищеварительной трубки под хордой. Далее, для них характерно наличие в зародышевом состоянии или в течение всей жизни многочисленных жаберных щелей, открывающихся наружу из глоточного района пищеварительной трубки и являющихся органами дыхания. Наконец, для них характерно расположение сердца или замещающего его сосуда на брюшной стороне.

Наряду со специфическими чертами для хордовых характерны билатеральная симметрия, трехслойность, вторичная полость тела. Как и полухордовые, хордовые являются вторичноротыми организмами.

Хордовых классифицируют на подтипы Бесчерепные (Acrania) и Черепные (Craniata), или Позвоночные (Vertebrata).

Бесчерепные представлены классом Ланцетники (Amphioxi). Эти животные являются обитателями прибрежных участков морей. Наиболее известный представитель этого подтипа — ланцетник (Branchiostoma lanceolatum). Размеры его составляют несколько сантиметров в длину (рис. 32).

У ланцетников отсутствуют выраженные голова, мозг, челюсти, сердце. Осевой скелет у этих животных представлен хордой. Способны к свободной локомоции, раздельнополы. Оплодотворение происходит в воде.

Хозяйственного значения не имеют.

В эволюционном плане ланцетники представляют вторую стадию в эволюции хордовых, которая предшествовала эволюции позвоночных.

Позвоночные (Vertebrata) имеют очень совершенные покровы тела в виде кожи, состоящей из двух слоев (многослойного эпидермиса и кориума), производными которой являются чешуя, перья, волосы, когти и ногти.

У позвоночных форм она заменена позвоночником. Во взрослом состоянии большинство позвоночных имеет костный скелет. Хорошо развиты голова, глаза, конечности.

Мышечная система дифференцируется на поперечно-полосатую и гладкую мускулатуру.

Пищеварительная система очень сложна. Кишечник разделен на три отдела. Имеются печень и поджелудочная железа.

Дыхательная система представлена жабрами или легкими.

Кровеносная система замкнута, представлена многокамерным сердцем, сосудами в виде артерий и вен. Клеточный состав крови очень дифференцирован. Имеется незамкнутая лимфатическая система.

Выделительная система очень совершенна. Она представлена парными почками и мочеточниками.

Характерной особенностью нервной системы, даже у низших позвоночных, является развитый мозг, а у высших форм — наличие мозговых полушарий. Нервная система подразделяется на центральную и периферическую. Развиты специализированные органы чувств (нос, глаза, уши). Развиты также железы внутренней секреции.

Для позвоночных характерны раздельнополость (кроме некоторых видов круглоротых), выраженный половой диморфизм. Мужские и женские половые железы парные, осеменение наружное или внутреннее. Для некоторых позвоночных характерно развитие с метаморфозом.

В пределах подтипа отмечается гигантское структурное и функциональное разнообразие организмов, что осложняет их классификацию и исключает пока единое мнение о количестве классов в этом подтипе. Однако наиболее распространенной является классификация, в которой выделяют классы Круглоротые (Cyclostomata), Хрящевые рыбы (Chonrichthyes), Костные рыбы (Osteichthyes), Земноводные, или Амфибии (Amphibia), Пресмыкающиеся, или Рептилии (Reptilia), Птицы (Aves) и млекопитающие, или Звери (Mammalia).

Поскольку у позвоночных тоже найдены гены кластеров Нох (4 кластера по 9-11 генов), то считают, что дубликация этих генов у примитивных хордовых, а затем у ранних позвоночных позволила эволюцию в направлении общего плана строения и сходных систем органов.

Класс Круглоротые (Cyclostomata) представлены примитивными животными, обитающими в морских и пресных водах умеренных широт обоих полушарий. Насчитывают свыше 40 видов. Наиболее известными организмами этого класса являются миноги и миксины. Типичным представителем этого класса является речная минога (Lampetra fluviatilis).

Имеют промысловое значение.

Отсутствие у миног и миксин челюстей и парных конечностей позволяет считать их низшими позвоночными. Современные круг-лоротые являются потомками очень древней группы позвоночных животных, называемых бесчелюстными и произошедших от ископаемых остракодерм, живших 500 млн лет назад и представлявших собой первых позвоночных.

Предполагают, что острокодермы представляют собой предко-вую форму всех позвоночных и что хрящевой скелет Круглоротых возник в результате дегенерации костного скелета в ходе эволюции их предков.

Класс Хрящевые рыбы (Chondichthyes) представлен обитателями в основном морей и океанов. Насчитывают около 730 видов этих рыб. Наиболее известными представителями этого класса являются акулы и скаты (рис. 33).

Размеры хрящевых рыб составляют от нескольких миллиметров до нескольких метров в длину. Характерными особенностями их являются хрящевой скелет, кожа, покрытая плакоидными (зубовидными) чешуями, парные конечности — плавники, зубы, покрытые эмалью, 5-7 пар наружных жаберных щелей (у пластино-жаберных), отсутствие кожных костей и плавательного пузыря. Для большинства хрящевых рыб характерны также поперечный рот и головной мозг прогрессивного строения.

У этих животных размножение происходит путем откладки яиц, яйце-живорождения и живорождения.

Хрящевые рыбы имеют некоторое хозяйственное значение. Отдельные виды являются ядовитыми для человека.

Первые хрящевые рыбы обитали в древних морях уже около 300 млн лет назад, современные формы появились около 150 млн лет назад. Предполагают, что они представляют собой боковую филогенетическую ветвь.

Класс Костные рыбы (Osteichthyes) в видовом составе довольно многочисленны (около 1500 видов). Являясь обитателями морских и пресных вод (рис. 34), они отличаются от хрящевых рыб тем, что имеют внутренний костный скелет, головные кости (черепную коробку, в которой размещен мозг), покров из костных чешуи незубовидного типа, плавательный пузырь (или легкое). Тело расчленено на голову, туловище и хвост. Внешние покровы представляют собой кожу.

Размеры костных рыб составляют от нескольких миллиметров до нескольких метров в длину.

Мускулатура имеет сегментарное строение. Развиты специализированные мышцы, приводящие в движение челюсти, глаза и другие органы.

Пищеварительная система представлена ротовым отверстием, ведущим в ротовую полость, пищеводом, желудком и кишкой, заканчивающейся задним проходом. Имеются печень с желчным пузырем и поджелудочная железа (слаборазвитая).

Плавательный пузырь заполнен газовой смесью (кислород, углекислота и азот) и служит гидростатическим аппаратом. Дыхательная система представлена жаберным аппаратом. Кровеносная система состоит из одного круга кровообращения (как у круглоротых). Двухкамерное сердце расположено в передней части полости тела, состоя из предсердия и желудочка. Выделительная система представлена первичными почками. Нервная система характеризуется более прогресссивным развитием по сравнению с круглоротыми, т. к. полушария переднего мозга более развиты. В среднем мозгу есть изгиб, характерный для всех позвоночных. Центры чувств расположены в разных отделах мозга. Из головного мозга выходит 10 пар нервов, начинающихся спинным и брюшным корешками. Вегетативная нервная система представлена двигательными волокнами блуждающего нерва. Она инНервирует все внутренние органы.

Костные рыбы раздельнополы. Оплодотворение внешнее, у некоторых видов внутреннее.

Костные рыбы имеют огромное хозяйственное значение, являясь источником продовольствия, иногда кормом для домашних животных.

Важно отметить, что рыбы некоторых видов служат промежуточными хозяевами для гельминтов, являющихся возбудителями описторхоза, дифиллоботриоза, а также сырьем для получения лекарств (рыбий жир), или являются ядовитыми животными, представляющими опасность для здоровья человека.

Костных рыб классифицируют на подклассы Лопастеперые (Sarcopterygii) и Лучеперые (Actinopterygii).

Предполагают, что костные рыбы произошли около 500 млн лет назад от предков, общих с круглоротыми. Их эволюция шла в направлении развития челюстей, жаберных дуг, парных плавников. Наибольшего разнообразия костные рыбы достигли к началу нашей эры, став одними из процветающих классов позвоночных. Одна из эволюционных ветвей лопастеперых представляла собой кистеперых рыб, которые дали затем начало первым наземным позвоночным. Современные рыбы на 95% представлены лучеперыми.

Класс Земноводные (Amphibia) объединяет примерно 4000 видов. Земноводные занимают промежуточное положение между водными и наземными животными (рис. 35). Всю жизнь или, по крайней мере, в личиночном состоянии земноводные так или иначе связаны с водой. Они обитают вблизи водоемов, во влажных местах или водоемах во всех районах мира. У них впервые появляется голос. В качестве наземных животных они примитивны, причем их несовершенство отражается на строении и функциях всех их систем органов.

Покровы земноводных представлены голой кожей, покрытой слизью.

Скелет разделен на шейный и крестцовый отделы. В черепе еще сохраняются остатки хрящевой ткани, характерной для кистеперых рыб. Грудной клетки и ребер нет, но уже имеются пятипалые передние и задние конечности, развиты плечевой и тазовый пояса конечностей.

Мускулатура хорошо развита и состоит из мышц, двигательные функции которых специфичны.

Пищеварительная система состоит из ротовой полости, переходящей в глотку, пищевода, желудка и кишечника, заканчивающегося клоакой. Развит язык. Имеются печень, поджелудочная железа, а также слюнные железы.

Дыхательная система характеризуется тем, что у личиночных форм дыхание осуществляется с помощью жабр, а у взрослых — легкими, которые имеют вид тонкостенных мешков ячеистого строения. Однако дыхательные пути развиты недостаточно. В газообмене принимает участие также и кожа, содержащая большое количество капилляров.

Кровеносная система представлена трехкамерным сердцем, состоящим из двух предсердий и желудочка, артериями, венами и капиллярами. Имеется два круга кровообращения, но артериальная и венозная кровь еще частично смешиваются.

Выделительная система представлена парой примитивных почек в виде продолговатых тел, двумя мочеточниками, мочевым пузырем и клоакой. »

Нервная система состоит из головного мозга, в котором относительно развит продолговатый мозг. От головного мозга отходят 10 пар нервов. Органы чувств очень развиты. В глазах имеются уплощенный хрусталик и выпуклая роговица. Животные хорошо различают запахи. Среднее ухо содержит слуховую косточку.

Эндокринная система представлена рядом желез внутренней секреции, продукты которых регулируют окраску животных, завершение метаморфоза и другие функции.

Земноводные раздельнополы, их система органов размножения существенно изменена по сравнению с этой системой у рыб. У самцов имеется пара семенников, у самок — пара яичников. Развитие происходит с метаморфозом. Из яиц выходят личинки (в воде), которые развиваются в головастиков.

Хозяйственное значение земноводных ничтожно.

Возникнув в девоне около 300 млн лет назад, они оказались самыми первыми примитивными животными среди наземных позвоночных.

Первые прыгающие лягушки появились около 200 млн лет назад. Предполагают, что предками земноводных являются древние кистеперые рыбы. Парные плавники кистеперых развились в пятипалые конечности земноводных. Покровные кости черепа кистеперых рыб сходны с покровными костями черепа палеозойских земноводных. Предполагают также, что особенности дыхания и передвижения, пригодные для жизни на суше, у предков земноводных появились, когда они были еще настоящими водными животными. Эти особенности, а также отрыв земноводных от воды

И закрепление их на суше возникли, видимо, в связи с изменениями кормовых возможностей. Промежуточной формой между Древними кистеперыми рыбами и современными земноводными являются стегоцефалы, которые произошли от кистеперых рыб и расцвет которых приходился на каменноугольный и пермский периоды. Типичные бесхвостые и хвостатые земноводные появились в верхней юре и среднем меле. Расцвет земноводных имел место в каменноугольном периоде.

Класс Пресмыкающиеся (Reptilia) — это первые настоящие наземные позвоночные. Количество видов в этом классе достигает 7000. Обитают во многих зонах земного шара. Характерной особенностью их является то, что они размножаются на суше яйцами, дышат исключительно легкими, а кожа имеет роговые покрытия. Для яиц характерно наличие защитной оболочки (скорлупы) и большое количество желтка, что уже само по себе означает первое приспособление к жизни на суше. У организмов этого класса развились также оболочки, окружающие эмбрион (одна из этих оболочек есть амнион). Благодаря этим важным репродуктивным приспособлениям пресмыкающихся относят к амниотам (вместе с птицами и млекопитающими).

У пресмыкающихся получили дальнейшее развитие пятипалые конечности. Впервые у них появляется кора больших полушарий.

Покровы тела представлены кожей, которая покрыта роговыми чешуйками, щитками или пластинками и не содержит слизистых желез. Такие свойства кожи обеспечивают независимость осмотического давления в теле от окружающей среды.

Тело состоит из головы, шеи, туловища, хвоста и конечностей (кроме змей). Скелет характеризуется прогрессивным развитием. Являясь костным, он подразделяется на головной (череп), шейный, грудной, поясничный, крестцовый и хвостовой отделы. Череп у одних видов почти монолитен, (кроме отверстий для глаз, ноздрей и теменного органа), у других дифференцирован на отдельные кости. В шейном отделе позвоночника имеются атлант и эпистрофей, что расширяет двигательные возможности головы. Конечности, которые по строению являются промежуточными между конечностями земноводных и млекопитающих, заканчиваются 5 пальцами.

Скелетная мускулатура намного мощнее, чем у земноводных.

Пищеварительная система значительно дифференцирована. Имеется зачаток слепой кишки.

Дыхательная система представлена трахеей, которая разветвляется на два бронха, входящие в легкие. Последние построены из тонкостенных мешков, имеющих ячеистую структуру. Кожного дыхания уже нет, что привело к усовершенствованию легких в качестве единственного органа дыхания и к участию в дыхании грудной клетки.

Кровеносная система также характеризуется дальнейшим совершенствованием. Сердце трехкамерное, желудочек разделен неполной перегородкой на венозную и артериальную половины. Настоящее четырехкамерное сердце встречается лишь у крокодилов, у которых правый и левый желудочек полностью обособлены, т. е. разделены тонкой перегородкой. У пресмыкающихся два круга кровообращения, но они еще не полностью разделены (даже у крокодилов), в результате чего кровь еще частично смешивается в спинной аорте (как и у земноводных).

Выделительная система представлена парой вторичных тазовых почек (метанефрос) и парой мочеточников, впадающих в клоаку, в которую одновременно открывается и мочевой пузырь. Особенность строения почек заключается в том, что при уменьшении относительной фильтрационной площади клубочков увеличена протяженность канальцев. Осморегулирующая функция почек почти не выражена, т. к. В теле пресмыкающихся нет избытка воды.

Нервная система также характеризуется прогрессивными чертами. В частности, головной мозг имеет черты, характерные для мозга наземных животных. В продолговатом мозгу сформирован изгиб, который обычно встречается у всех амниот. Сформирован также зачаток коры больших полушарий мозга. От головного мозга отходят черепномозговые нервы (12 пар). Характерно более совершенное зрение за счет возможности изменения кривизны хрусталика. В ресничном теле развита поперечно-полосатая мускулатура. В органах слуха увеличена улитка, в слуховой капсуле имеется второе отверстие. Органы обоняния отличаются большой развитостью носовых раковин, развитием вторичного нёба. Очень развит якобсонов орган, обеспечивающий восприятие запаха добычи.

Пресмыкающиеся обладают всеми эндокринными железами, характерными для высших животных. Температура тела пресмыкающихся зависит от среды.

Пресмыкающиеся раздельнополы, характеризуются выраженным половым диморфизмом. Одни пресмыкающиеся являются яйцекладущими, другие —живородящими. Широко развито яйце-живорождение. Пол генетически детерминируется лишь у некоторых видов ящериц, возможно, у всех змей. Однако у многих пресмыкающихся пол детерминируется не генетически, а факторами внешней среды, в частности, температурой. Например, у многих видов черепах действие высоких температур сопровождается появлением на свет лишь самок, низких температур — только самцов. Обратное положение отмечено у крокодилов и некоторых видов ящериц.

Животных этого класса подразделяют на отряды Чешуйчатые (Sguamata), Черепахи (Chelonia), Крокодилы (Crocodylia) и Первоящеры, или Клювоголовые (Prosauria, или Rhyncocephalia).

Значение змей определяется тем, что многие виды обладают ядовитыми железами и зубами. Хозяйственное значение определяется ценностью их кожи. Черепахи имеют хозяйственное значение, поскольку некоторые виды и их яйца съедобны. Крокодилы тоже имеют хозяйственное значение, но опасны в качестве хищников, нападающих на человека.

Пресмыкающиеся входят в главный ствол эволюции, являясь предковыми формами птиц и млекопитающих. Древнейшими пресмыкающимися были котилозавры, которые произошли от стегоцефалов в каменноугольном периоде. Развитие котилозавров дало начала нескольким эволюционным ветвям (ихтиозаврам, плезиозаврам). В качестве слепой боковой группы отделились анапсиды, современными потомками которых являются черепахи, возникшие в триасе.

Важным событием в эволюции пресмыкающихся было появление малых пресмыкающихся (диапсид), череп которых имел два отверстия в височной области. Одним из потомков этих пресмыкающихся является относительно мало модифицированная сейчас гаттерия. Ящерицы и змеи развились из предковых форм диапсид в результате дальнейшей модификации черепа. Другие диапсид-ные формы дали начало археозаврам («правящим рептилиям»), потомками которых являются крокодилы, появившиеся в конце триаса. В мезозое эта группа была процветающей в виде динозавров и летающих пресмыкающихся. Одна из ветвей диапсид могла быть предковой для птиц.

Предполагают, что очень ранняя боковая ветвь из ствола древних котилозавров дала линию, ведущую к терапсидам, представляющим собой пресмыкающихся, напоминающих млекопитающих. Остатки этих животных обнаруживают в перми и триасе. Они являются мостом между рептилиями и млекопитающими, первые из которых появились в конце триаса.

Класс Птицы (Aves) — эта систематическая группа представлена позвоночными животными, биологические и анатомические свойства которых определяются наличием у них приспособлений для полета и передвижений по твердому субстрату. Известно около 9000 видов. Обитают по всему земному шару, но наибольшее количество видов сосредоточено в тропиках.

Наземная локомоция птиц является двуногой (задние конечности). Передние конечности видоизменены в крылья, имеющие рудименты трех пальцев. Туловище компактное с большой грудиной для крепления мышц крыльев. Кости черепа и скелета заполнены воздухом. Костный хвост уменьшен.

Скелет хорошо развит в области грудной клетки. Кости черепа сращены. Шейные позвонки очень подвижны. Поясничные, крестцовые и часть хвостовых позвонков также сращены.

Покровами тела служит тонкая кожа, не содержащая желез, кроме копчиковой железы у корня хвоста. Производными кожи являются перья на теле, роговые чешуи на конечностях и когти на концах пальцев.

Мускулатура очень развита, особенно мышцы груди, шеи и конечностей.

Пищеварительная система характеризуется отсутствием зубов, но есть зоб (расширение пищевода), который служит для размягчения пищи. Имеются крупная двухлопастная печень и хорошо развитый желчный пузырь.

Дыхательная система обеспечивает приспособление для полета. Поэтому легкие представляют собой уплотненный губчатый орган, дополненный тонкостенными воздушными мешками, располагающимися между органами, в полостях костей, под кожей, в мышцах. Для птиц характерно двойное дыхание, т. к. при взмахе крыльями воздух проходит через легкие. Это позволяет более интенсивный газовый обмен в полете (рис. 36).

Кровеносная система характеризуется тем, что сердце полностью разделено на правую венозную и левую артериальную половины, а имеющиеся два круга кровообращения полностью самостоятельны. Артериальная и венозная кровь не смешиваются. Температура тела постоянна (42—45°С).

Выделительная система характеризуется наличием пары вторичных почек и пары мочеточников, которые открываются непосредственно в клоаку, мочевого пузыря нет. Компоненты мочи вместе с экскрементами выходят наружу через клоаку.

Нервная система птиц характеризуется дальнейшим развитием головного мозга, в котором имеются относительно большие полушария и зрительные доли, хорошо развитый мозжечок. Имеются 12 пар черепно-мозговых нервов.

Птицы — раздельнополы с выраженным половым диморфизмом. Птицы имеют важное хозяйственное значение,являясь источником мяса, яиц, пуха, пера. Отдельные виды диких птиц имеют промысловое значение. Они имеют также медицинское значение, т. к. могут болеть орнитозом, к которому чувствителен человек. Являясь дополнительными хозяевами ряда паразитов, поддерживают природные очаги таких опасных для человека болезней, как токсоплазмоз и листериоз.

Таежные птицы служат резервуаром вируса таежного энцефалита, птицы Средней Азии — резервуаром вируса клещевого возвратного тифа. Доказано, что птицы могут транспортировать переносчиков возбудителей болезней на очень большие расстояния. Птицам присуща высокая экологическая пластичность.

Классификация птиц очень осложнена, т. к. нет единого мнения о количестве основных систематических единиц в этом классе.

Предками птиц были, вероятно, древнейшие бегающие пресмыкающиеся (рис. 37). Промежуточной формой между пресмыкающимися и птицами считают археоптерикса (Archaeopteryx), ископаемые остатки которого обнаружены в позднеюрских отложениях (возраст 85 млн лет). Найдены также ископаемые остатки птиц (Liaoning), которые имели сходство по ряду признаков как с археоптериксом, так и с современными птицами. У птиц размеры генома значительно уменьшены по сравнению с млекопитающими. Масса ДНК у птиц составляет 2,82,±0,33 пг на клетку, тогда как у млекопитающих она равна 8 пг на клетку. Предполагают, что редукция размеров генома птиц происходила постепенно на протяжении длительного периода и что на протяжении этого периода шел отбор на уменьшенные размеры генома. Предполагают также, что размеры генома обеспечивают одно из приспособлений к полету. В пользу этого предположения свидетельствует тот факт, что размеры геномов у нелетающих птиц являются значительно большими, чем у летающих.

Класс Млекопитающие , или Звери (Mammalia) — это наиболее организованные, в основном наземные позвоночные животные, находящиеся на высшей стадии развития и обитающие во всех географических зонах. Они представляют собой современную процветающую группу животных. В этом классе насчитывают около 3200 видов.

Для млекопитающих характерен ряд особенностей. Их детеныши выкармливаются молоком, которое вырабатывается специальными молочными железами. Плод развивается в матке. Благодаря совершенному развитию нервной системы и механизмов терморегуляции у них поддерживается постоянная температура тела, обеспечивающая их активность в любых климатических условиях.

Имеют волосяной или шерстный покров. Масса отдельных особей составляет от 2 г (землеройка-малютка) до 150 тонн (синий кит).

Покровы тела представлены кожей, которая состоит из многослойного эпидермиса и кориума, построенного из волокнистой соединительной ткани. Кожа снабжена многими потовыми и сальными железами. В подкожной клетчатке содержатся жировые клетки. Роговыми образованиями кожи являются волосы, ногти, когти, рога и копыта. У всех млекопитающих имеются молочные железы, которые представляют собой видоизмененные потовые железы.

Осевой скелет характерен четким разделением позвоночника на шейный, грудной, поясничный, крестцовый и хвостовой отделы. Количество шейных позвонков постоянно, у атланта на передней стороне имеются две поверхности. Скелет конечностей очень прочен. Бедренные кости выдерживают очень большие нагрузки, которые у некоторых видов достигают до 1500-2000 кг. Мышечная система очень развита, состоя из множеств специализированных мышц.

Пищеварительная система имеет все отделы, заканчиваясь самостоятельным заднепроходным отверстием. Развиты зубы (кроме отдельных видов, включая китообразных), среди которых различают резцы, клыки и коренные. По характеру пищи, используемой для кормления, различают растительноядных и плотоядных млекопитающих.

Дыхательная система представлена легкими, трахеей, бронхами, бронхиолами, альвеолами.

Кровеносная система очень совершенна. Сердце четырехкамерное, имеются два круга кровообращения, левая дуга аорты. Зрелые эритроциты лишены ядер.

Выделительная система характеризуется тем, что мочевой пузырь открывается в мочеиспускательный канал. Почки парные, отходящие от них мочеточники открываются в мочевой пузырь.

Нервная система достигает вершины в своем развитии. Особо развиты полушария головного мозга, извилины и борозды в коре головного мозга, мозжечок. Очень развиты органы чувств. Орган слуха состоит из наружного уха, наружного прохода, трех слуховых косточек и звуковоспринимающего аппарата. Обоняние связано с развитием пластинчатых носовых раковин и носового лабиринта. Развиты зрение и осязание.

Железы внутренней секреции очень развиты.

Размножение половое, половые железы у особей обоих полов парные. Выражен половой диморфизм. Оплодотворение внутреннее.

Млекопитающих классифицируют на подклассы Первозвери (Prototheria) с отрядом Однопроходные (Monotremata) и Настоящие звери (Theria) с инфраклассами Низшие звери (Metatheria) и Высшие звери (Eutheria) с большим количеством отрядов.

Однопроходные (утконос, ехидна, проехидна) являются обитателями Австралии и характеризуются тем, что подобно пресмыкающимся, они откладывают яйца.

Низшие звери, или Сумчатые (кенгуру, сумчатый волк, сумчатый крот и другие), являются обитателями Австралии и Южной Америки. Не имея плаценты, рожденных детенышей вынашивают в сумке.

Высшие звери являются плацентарными животными. Они чрезвычайно разнообразны (насекомоядные, рукокрылые, грызуны, хищные, ластоногие, китообразные, непарно- и парнокопытные, хоботные, приматы и другие). В эмбриональном онтогенезе питание плодов происходит через плаценту, детеныши рождаются развитыми, характеризуются двойной сменой зубов.

Для млекопитающих характерно чрезвычайное разнообразие в образе жизни. Различают наземных, подземных, водных и даже летающих животных (рукокрылых).

Роль млекопитающих в жизни человека, который сам относится к млекопитающим, чрезвычайно велика и разнообразна. Ее невозможно переоценить. Многие из них, особенно домашние животные, имеют огромное хозяйственное значение, являясь источником продовольствия для человека и сырья для промышленности. Значительное количество видов имеет промысловое значение. Например, основу пушной добычи составляет около 20 видов. Поскольку млекопитающие болеют общими с человеком заболеваниями, служат хозяевами паразитов или являются природными резервуарами возбудителей ряда трансмиссивных заболеваний человека, то очень велико их медицинское значение.

Происхождение млекопитающих обычно объясняют возникновением их от терапсид (древних палеозойских рептилий) в позднем триасе. Многие зоологи считают, что млекопитающие имеют по-лифилетический генез, т. е. каждый подкласс млекопитающих имеет отдельного терапсидного предка. Обладая высокоразвитой нервной системой и другими свойствами, млекопитающие выделились из позвоночных в качестве класса, завоевавшего сушу. Расцвет плацентарных приходится на палеоцен (55-65 млн лет назад). Начиная с третичного периода, они являются преобладающей (процветающей) формой жизни на Земле (рис. 38).

Вопросы для обсуждения

1. Каковы основные черты простейших? В чем заключается их значение в природе и в жизни человека?

2. Входят ли губки и кишечнополостные в основной ствол эволюции?

3. Что вы знаете о классификации гельминтов?

4. Насколько велики различия между плоскими и круглыми гельминтами?

б. Что вы знаете о происхождении круглых гельминтов?

6. На каких принципах основана классификация членистоногих, в чем она заключается и каковы основные черты эволюции животных этого типа?

7. Каково значение членистоногих в природе и жизни человека?

8. Какова древность иглокожих?

9. Каковы признаки, характерные для типа Хордовые? Как вы представляете классификацию Хордовых?

10. Каково эволюционное значение бесчерепных?

11. Каковы характерные черты позвоночных?

12. Каково филогенетическое значение круглоротых и рыб?

13. В чем заключается филогенетическое значение земноводных? С какими ароморфозами связана эволюция животных этого класса?

14. Назовите прогрессивные черты пресмыкающихся. Каковы происхождение и эволюционное значение пресмыкающихся?

15. Назовите прогрессивные черты в организации и приспособлении к полету птиц. Что вы знаете о происхождении животных этого класса? Каково их значение в жизни человека?

16. В чем заключаются главнейшие признаки, характерные для млекопитающих, и особенно их прогрессивные черты?

17. Какова роль млекопитающих в жизни человека?

18. Как и когда произошли млекопитающие?

19. Какое значение в понимании теории эволюции имеет рассмотрение основных свойств животных, принадлежащих к разным типам?

Литература

Выховский Б. Е. Зоология. В кн. «История биологии». М.: Наука. 1975. 24-57.

Хадорн Э.. Венер Р. Общая зоология. М.: Мир. 1989. 523 стр.

Carrol S. В. Homeotic genes and the evolution of arthropods and chordates. Nature, 1995, Vol. 376, 479-485.

Chiappe L. M. The first 86 million years of avian evolution. Nature, 1996, Vol. 378, 349-366.

Глава IV

Разнообразие вирусов

Вирусы представляют собой субмикроскопические внеклеточные формы жизни.

Открытие вирусов принадлежит Д. И. Ивановскому, который в 1892 г. обнаружил возбудителя мозаичной болезни табака и его способность проходить через фильтры, не пропускающие бактерий. По этой причине вирусы первоначально получили название фильтрующихся ядовитых жидкостей. Повторив опыты Д. И. Ивановского и получив аналогичные результаты, голландский микробиолог М. Бейеринк в 1898 г. дал для возбудителя мозаичной болезни табака название «фильтрующаяся вирусная жидкость». Тогда же был описан вирусный возбудитель ящура крупного рогатого скота (Ф. Лефлер и П. Фрош, 1898), а в 1901 г. У. Рид, используя существовавшую со времен А. Пастера традицию называть инфекционное начало вирусом, назвал открытого им возбудителя желтой лихорадки просто вирусом (от лат. virus — яд). Начиная с 1931 г., когда был открыт способ культивирования вирусов в клетках эмбрионов цыплят, вирусы стали широко культивировать в лабораторных условиях, что значительно расширило возможности экспериментального изучения этих структур.

К настоящему времени вирусы открыты у организмов практически всех систематических групп растений и животных (у микоплазм, бактерий, листостебельных растений, простейших, гельминтов, насекомых, земноводных, пресмыкающихся, птиц, млекопитающих). Известно значительное количество вирусов, выделенных от человека. Можно сказать, что вирусы вездесущи.

В лабораторных условиях вирусы культивируют на куриных эмбрионах, в культивируемых соматических клетках, на переживающих лоскутах кожи и в эксплантантах органов, а также в организме восприимчивых животных. Важно отметить, что они не способны к росту на питательных средах, используемых для культивирования бактерий или соматических клеток, и в этом заключается одно из принципиальных отличий их от других организмов.

Вирусы не способны к воспроизведению в свободном состоянии. Их воспроизведение возможно только в клетках. Кроме того, оказавшись в клетках, они ведут себя как облигатные внутриклеточные паразиты, вызывая болезни организмов, в которых паразитируют. Следовательно, вирусам присущи две формы существования, а именно: внеклеточная, или покоящаяся, и внутриклеточная, или репродуцирующаяся.

§8 Общие свойства вирусов

В общем виде вирусы представляют собой субмикроскопические образования, состоящие из белка и нуклеиновой кислоты и организованные в форме вирусных частиц, часто называемых вирусными корпускулами, вирионами, вироспорами или нуклеокапсидами.

Размеры вирусных частиц составляют от 15—18 до 300—350 нм. Их можно увидеть только с помощью электронного микроскопа. Исключение составляют лишь вирус оспы и некоторые другие крупные вирусы, которые можно увидеть в высокопрецизионном световом микроскопе.

Одиночные вирусы тех или иных видов представляют собой образования различной формы (округлой, палочковидной или другой формы), внутри которых содержится нуклеиновая кислота (ДНК или РНК), заключенная в белковую оболочку (капсид).

Вирусный капсид построен из полипептидных цепей (разных белков), сложенных в несколько слоев. У отдельных вирусов капсид окружен дополнительной мембраной, построенной из сложных вирусоспецифических белков (гликопротеидов) и двойного слоя липидов, идентичных липидам плазматической мембраны клетки-хозяина. Эту вирусную мембрану часто называют супер-капсидом.

Функциональное значение капсида определается тем, что он предохраняет вирусный геном (нуклеиновую кислоту) от повреждений, а также содержит рецепторы, обеспечивающие адсорбцию вирусных частиц на поражаемых ими клетках.

Внутреннее содержимое вирусов, часто называемое геномом или вирусной хромосомой, состоящей из нескольких генов, представляет собой ДНК или РНК в разных формах. Например, геном бактериальных вирусов MI3 и XI74 представлен одноцепочечной кольцевой молекулой ДНК, тогда как у парвовирусов, к которым относят многие вирусы крупного рогатого скота, свиней, кошек, крыс и других животных, он представлен одноцепочечной линейной молекулой ДНК. Геном вирусов полиомы и SV40 представлен двухцепочечной кольцевой молекулой ДНК, но у аденовирусов двухцепочечная кольцевая ДНК имеет на 5'-концах цепей ковалентно присоединенный белок, а у вируса оспы двухцепочечная ДНК характеризуется тем, что концы ее цепей ковалентно «сшиты» фосфодиэфирными связями.

Геном вирусов мозаичной болезни табака, полиомиелита и некоторых бактериальных вирусов представлен одноцепочечной РНК, тогда как геномом реовируса служит двухцепочечная РНК-Воспроизводство вирусов происходит в клетках хозяина и состоит из нескольких стадий, а именно: адсорбция и проникновение вирусов в клетки, синтез вирусных белков, необходимых для репликации вирусной нуклеиновой кислоты, репликация нуклеиновой кислоты, синтез белков капсида, сборка вирусов и выход из клетки «готовых» вирусных частиц.

ДНК-содержащие вирусы имеют либо собственные ферменты репликации (в капсиде), либо в их геноме закодирована информация о синтезе вирусных ферментов, обеспечивающих репликацию вирусной нуклеиновой кислоты. Количество этих ферментов различно в применении к разным вирусам. Например, в геноме бактериального вируса Т4 закодирована информация о синтезе около 30 вирусных ферментов. Далее геном крупных вирусов кодирует нуклеазы, разрушающие ДНК клетки-хозяина, а также белки, воздействие которых на клеточную РНК-полимеразу сопровождается тем, что «обработанная» таким образом РНК-полимераза транскрибирует на разных стадиях вирусной инфекции разные вирусные гены. Напротив, малые по размерам ДНК-содержащие вирусы в большей мере зависят от ферментов клеток-хозяев. Например, синтез ДНК аденовирусов обеспечивается клеточными ферментами.

Репликация ДНК-содержащих вирусов начинается с 0-пункта их хромосомы, к которому прикрепляются белки клетки-хозяина, «притягивающие» к себе как вирусные, так и клеточные ферменты репликации.

У некоторых РНК-содержащих вирусов в геноме закодированы РНК-зависимые транскриптазы (обратные транскриптазы). Поэтому репликация генома РНК-содержащих вирусов катализируется собственной обратной транскриптазой, которая упаковывается в капсиде при каждой репликации вирусов в клетке-хозяине. Такие РНК-содержащие вирусы получили название ретровирусов (от лат. retro — возврат назад).

Классическим примером ретровирусов служит вирус саркомы кур Рауса (рис. 39).

К ретровирусам относят вирус иммунодефицита человека (ВИЧ), являющийся причиной синдрома приобретенного иммунодефицита (СПИДа). Однако РНК вируса полиомиелита служит в качестве мРНК.

Классификация вирусов является сложной и часто противоречивой. Тем не менее ДНК-содержащие и РНК-содержащие вирусы обычно классифицируют раздельно на разные семейства. Например, среди ДНК-содержащих вирусов животных классифицируют семейства парвовирусов (вирусы крыс, кошек и др. животных), паповавирусов (вирусы бородавок человека, полном и другие), аде-новирусов (вирусы фарингитов и конъюнктивитов человека, вирусы млекопитающих), поксвирусов (вирусы оспы человека и животных), вирусы герпеса (вирусы герпеса, опоясывающего лишая человека, ларинготрахеита птиц и др.), иридовирусы (вирусы оспы свиней, африканской чумы свиней и др.).

Среди РНК-содержащих вирусов животных классифицируют семейства пикорнавирусов (риновирусы человека, вирус полиомиелита человека, полиовирусы животных, вирус ящура животных и др.), реовирусов (вирусы тендосиновита кур и др.), миксовиру-сов (вирусы гриппа, кори, бешенства человека, чумы плотоядных и др.), арбовирусов (вирусы клещевого и японского энцефалитов, желтой лихорадки человека и Др.). Подобные классификации существуют и в случае вирусов растений; что касается фагов, то их классифицируют на основе того, какие бактерии они лизируют. Например, кишечные фаги — это фаги, лизирующие кишечные бактерии, дизентерийные фаги — это фаги, лизирующие дизентерийные бактерии и т. д.

§9 Вирусы животных, растений и бактерий

Поскольку вирусы обнаружены в клетках организмов разных систематических групп, мы рассмотрим здесь вирусы человека, животных (млекопитающих), растений и бактерий раздельно.

Вирусы человека и животных являются наиболее изученными по сравнению с вирусами другого происхождения. Они вызывают болезни, многие из которых характеризуются большей тяжестью лечения и высокой смертностью. Наиболее известными вирусными болезнями человека являются грипп, полиомиелит, бешенство, оспа, клещевой энцефалит и другие, а домашних животных — бешенство, ящур, чума, оспа, энцефаломиелит и др., отдельные из которых являются повальными болезнями.

Морфология вирусов человека и животных довольно разнообразна, но в общем они являются овальными образованиями, диаметр которых составляет несколько десятков нанометров (рис. 40).

Как уже отмечено, репродукция вирусов происходит только в живых клетках, т. е. синтез как вирусного генома (нуклеиновой кислоты), так и белков капсида происходит только в клетках. В клетках осуществляется также и сборка из вирусной нуклеиновой кислоты и белков новых инфекционных вирусных частиц.

Вирусная инфекция человека (животных) начинается с того, что инфицирующий вирус связывается с цитоплазматической мембраной клеток, после чего в результате эндоцитоза проникает внутрь клеток. Внутри клеток вирусные частицы оказываются или в ядре или в цитозоле, где их нуклеиновая кислота освобождается от капсида. Например, ДНК вируса герпеса человека освобождается от капсида в ядре. Там же происходит и сборка новых нуклеокапси-дов, после чего они покидают клетку. Напротив, РНК некоторых РНК-содержащих вирусов освобождается от капсида в цитозоле, после чего она транслируется на рибосомах клетки-хозяина с образованием кодируемой вирусом РНК-полимеразы. Последняя синтезирует РНК, отдельные из копий которой выполняют роль мРНК, транслируемой в мембранные и капсидные белки. Сборка вирусных частиц идет затем на плазматической мембране, после чего они покидают клетку.

Выход вирусных частиц из клеток характеризуется особенностями, определяемыми видом вирусов. Вновь образованные вирусные частицы могут выходить из клеток наружу постепенно. В этом случае структура клеток не нарушается, в них продолжается синтез новых вирусных частиц. Однако после инфекции клеток генетический материал вирусов может включаться в их геном и находиться там неопределенно долгое время в активном состоянии. В данном случае вирус ведет себя по типу так называемой латентной (скрытой) инфекции. Дальнейшее развитие латентных вирусов может наступить в результате какого-либо воздействия, после которого вирусы освобождаются из клеток с лизисом их или без лизиса.

Помимо способности вызывать инфекционные болезни человека и животных, отдельные виды вирусов обладают свойством индуцировать образование опухолей. Таким свойством обладают как ДНК-содержащие, так и РНК-содержащие вирусы (ретровирусы). Вирусы, способные вызывать опухоли, получили название опухо-леродных или онкогенных вирусов, а процесс изменения клеток и превращение их в раковые называют вирусной неопластической трансформацией.

В случае ДНК-содержащих вирусов человека и животных их свойство вызывать опухоли зависит от отношения вирусной ДНК к хромосомам клетки. Вирусная ДНК может оставаться подобно ллазмидам в клетке в автономном состоянии, реплицируясь вместе с клеточными хромосомами. При этом регуляция деления клеток не нарушается. Однако вирусная ДНК может включиться в одну или несколько хромосом клетки-хозяина. При таком исходе деление клеток становится нерегулируемым. Другими словами, инфицированные ДНК-содержащим вирусом клетки превращаются в раковые. Примером онкогенных ДНК-содержащих вирусов является вирус SV40, выделенный много лет назад из клеток обезьян. Онкогенное действие этих вирусов зависит от того, что отдельные вирусные гены действуют как онкогены, активизируя клеточную ДНК и побуждая клетки к вступлению в 8-фазу с последующим неконтролируемым делением. РНК-содержащие вирусы из-за включения их РНК в одну или несколько хромосом клетки-хозяина также обладают онкогенным действием. В геноме этих вирусов также есть онкогены, однако они существенно отличаются от онкогенов ДНК-содержащих вирусов тем, что в геноме клеток-хозяев присутствуют их гомологи в виде протоонкогенов. Когда РНК-содержащие вирусы инфицируют клетки, они «захватывают» в свой геном протоонкогены, которые представляют собой последовательности ДНК, контролирующие синтез белков (киназ, факторов роста, рецепторов факторов роста и др.), участвующих в регуляции клеточного деления. Однако известно, что существуют и другие способы превращения клеточных протоонкогенов в вирусные онкогены.

К настоящему времени установлено очень большое количество протоонкогенов. Примерами онкогенных РНК-содержащих вирусов являются вирус саркомы кур Рауса, а также вирусы сарком птиц, мышей, кошек, обезьян и других животных (табл. 1).

Данные об онкогенных вирусах имеют огромное значение не только для понимания многообразия жизни, но и для поисков эффективных путей лечения и профилактики злокачественных новообразований у человека и животных.

Наконец, как уже отмечено ВИЧ или HIV (Human immunodeficiency virus) способен вызвать СПИД или AIDS (acquired immunodeficiency syndrom), который в конечном итоге смертелен для человека. В отличие от других ретровирусов, ВИЧ в своем геноме содержит пять дополнительных открытых рамок чтения, которые кодируют белки, активирующие или репрессирующие вирусный белковый синтез и, возможно, другие функции. Летальный эффект этого вируса связан с тем, что, убивая специализированные хелперные клетки СДЧ (клетки Т), он повреждает иммунную систему человека, т. к. без этих клеток В-клетки не могут размножаться в ответ на поступление в организм нового антигена (см. § 96). Механизм инфицирующего и летального воздействия ВИЧ на клетки СДЧ в общем виде состоит в том, что при инфицировании клеток его капсидный белок связывается с трансмембранным клеточным белком, после чего вирусный капсид сливается с мембраной клетки, а вслед за этим вирусная РНК освобождается в клетку, где она после конверсии в двухцепочечную ДНК, включается в хромосому в качестве провируса. Белок, синтезируемый под контролем про-вируса, позволяет инфицированным Т-клеткам сливаться с неинфицированными Т-клетками, что ведет к гибели всех этих клеток. Следовательно, человек умирает от неспособности защититься иммунологически от тех инфекций, которые сами по себе не являются смертельными.

Таблица 1

Некоторые онкогены ретровирусов и функции, контролируемые этими протоонкогенами

Онкоген

Вирус

Функция протоонкогена

erb-A

Вирус эритробластоза птиц

Рецептор гормона щитовидной железы

erb-B

Вирус эритролеикоза птиц

Тирозиновая протеинкиназа.

Рецептор фактора роста эпидермиса

myb

Вирус миелобластоза птиц

Ядерный белок

mos

Вирус миелоцитоматоза птиц

Ядерный фактор транскрипции

fos

Вирус саркомы мышей

Протеинкиваза (серино-вая/треониновая)

H-ras

Вирус остеосаркомы мышей

Вирус саркомы крыс

Ядерный фактор транскрипции G-белок

sis

Вирус саркомы обезьян

В-цепь тромбоцитарного фактора роста

yes

Вирус саркомы Рауса

Тирозиновая протеинкиназа

Впервые ВИЧ был выделен в 1959 г. в Заире, после чего второй случай выделения этого вируса (в США) датируется 1969 г. С тех пор был выделен ряд штаммов ВИЧ. Открытие ВИЧ позволило по-новому взглянуть на мир вирусов, с одной стороны, и на характер общения между людьми, с другой стороны.

Вирусы, растений также широко распространены в природе, вызывая болезни растений разной видовой принадлежности. Как уже отмечено, первым открытым вирусом оказался МБТ-вирус мозаичной болезни табака (рис. 41), повреждающий листья растений этого вида. Помимо вируса мозаичной болезни табака широко известны вирусы некроза табака, желтой карликовости картофеля, желтой мозаики репы, а также вирусы, поражающие многие другие культурные и дикие растения.

Форма вирусов растений в основном бывает палочковидной и округлой. Размеры вирусов палочковидной формы составляют 300-480 х 15 нм, а размеры тех, которые имеют округлую форму, равны 25-30 нм.

Основными путями передачи вирусов от больных растений к здоровым является физический контакт между растениями, прививки растений, перенос вирусов через почву, а также перенос насекомыми.

Вирусные болезни растений приносят значительный ущерб сельскому хозяйству.

Вирусы бактерий, или бактериофаги (фаги), поражают бактерии, принадлежащие к разным систематическим группам. В молекулярной биологии в начале ее развития выдающаяся роль в качестве экспериментальных моделей принадлежала бактериофагам так называемой Т-группы, к которым чувствительны клетки Е. coli. Эти бактериофаги сейчас

являются самыми изученными, и все, что известно о бактериофагах, обязано в основном Т-бактериофагам.

Бактериофаги Т-группы имеют форму барабанных палочек размером 100 х 25 нм. Их геном представлен ДНК. Они являются вирулентными фагами, т. к. после инфипирования ими бактериальных клеток последние лизируются с освобождением большого количества вновь синтезированных фаговых частиц.

В противоположность вирулентным фагам, известны так называемые фаги умеренного действия, или просто умеренные фаги. Типичным представителем таких фагов является фаг К, который тоже использовался и используется в качестве экспериментальной модели для выяснения многих вопросов молекулярной генетики. Фагу X присущи два важных свойства. Подобно вирулентным фагам он может инфицировать бактериальные клетки, размножаться вегетативно, продуцируя в клетках сотни копий и лизировать клетки с освобождением зрелых фагочастиц. Однако ДНК этого фага может включаться в бактериальную хромосому, превращаясь в про-фаг. При этом происходит так называемая лизогенизация бактерий, а бактерии, содержащие профаг, называют лизогенными. Лизогенные бактериальные клетки могут обладать профагом бесконечно долгое время, при этом не лизируясь. Лизис с освобождением новых фагочастиц отмечается после воздействия на лизоген-ные бактерии какого-либо фактора, например УФ-излучения, которое индуцирует развитие профага в фаг. Изучение лизогенных бактерий позволило получить ряд новых данных о роли разных белков в действии фаговых генов.

Бактериофаги используют в медицине в качестве лечебного и профилактического средства в случае отдельных бактериальных болезней.

§10 Происхождение вирусов

Вопросы происхождения вирусов обсуждаются на протяжении всего времени, начиная с момента их открытия, поскольку необходимость рациональных объяснений эволюции вирусов определяется фундаментальным и практическим значением этих структур.

Одним из обсуждаемых вопросов является вопрос о времени появления вирусов. Поскольку вирусы не содержат ни рибосом, ни АТФ и поскольку они не могут существовать вне клеток, то считают, что они возникли позднее клеток.

Что же касается возникновения вирусов, то по этому поводу известно несколько гипотез. Первоначально считали, что они являются бактериями, включившимися в соматические клетки и ставшими там дегенеративными формами. В порядке обоснования этой гипотезы приводили данные о крупных вирусах, которые можно видеть в световом микроскопе с большим разрешением. Однако с началом развития молекулярной биологии на происхождение вирусов стали смотреть по-другому. Пререквизитом к появлению вирусов стали считать формирование последовательностей ДНК, способных к репликациям. Так как эти молекулярные события предположи-тельно представлялись сходными с событиями, предшествующими появлению плазмид (образование кольцевых молекул ДНК со свойствами репликонов из повторяющихся последовательностей ДНК на основе реципрокного кроссинговера), то в современной литературе четко обозначилась тенденция рассматривать происхождение, по крайней мере, бактериальных вирусов совместно с бактериальными плазмидами, причем дополнительным основанием к такому рассмотрению обычно считают сходство по ряду свойств между умеренными фагами и плазмидами.

Во-первых, как умеренные фаги, так и плазмиды (факторы переноса) способны к автономной репликации в цитоплазме и к включению в хромосому.

Во-вторых, факторы переноса детерминируют синтез специфических клеточных рецепторов, которые в отдельных случаях сходны с рецепторами для адсорбции фагов.

Наконец, факторы переноса, как и бактериальные вирусы, построены из нуклеиновой кислоты одного типа, зависят в своем метаболизме от клетки-хозяина и инфекциозны по отношению к клетке-хозяину.

Таким образом, бактериальные вирусы соответствуют ряду важных критериев, обычно используемых в определении плазмид. По этой причине плазмиды можно рассматривать в качестве бактериальных вирусов, у которых вместо механизма, обеспечивающего синтез белковой оболочки, получил развитие механизм, обеспечивающий их конъюгативность и эффективное распространение среди бактерий разных видов и родов.

Следовательно, бактериальные вирусы по отношению к плаз-мидам являются прогрессивными структурами, которые в ходе эволюции приобрели специализированные функции, необходимые для осуществления сложного цикла — воспроизводства инфекционных вирусных частиц и для существования за пределами клетки-хозяина (во внеклеточной форме). Первый бактериальный вирус, вероятно, возник, когда у плазмид появился ген (гены), кодирующий белок (белки) капсида.

Однако между бактериальными вирусами и плазмидами типа факторов переноса все же имеются очень важные различия.

Во-первых, факторы переноса, находясь в бактериях, контролируют на их поверхности синтез специализированных структур пиле и, вследствие чего бактериальные клетки обладают конъю-гативностью, т. е. способностью действовать в качестве генетических доноров. Бактериальные вирусы этой способностью не обладают.

Во-вторых, факторы переноса способны передаваться от клетки к клетке в результате клеточных контактов. Способ инфицирова-ния бактерий вирусами является совершенно иным и заканчивается фаголизисом инфицированной бактериальной клетки.

В-третьих, факторы переноса способны мобилизовать бактериальную хромосому на перенос от одной клетки к другой, причем также в результате клеточных контактов. Бактериальные вирусы этой способностью не обладают. Что же касается способности отдельных бактериальных вирусов переносить сегменты бактериальной хромосомы от одних клеток к другим, то механизм такого генетического обмена (трансдукции) не связан с клеточными контактами.

В-четвертых, сайты включения отдельных плазмид в хромосому более или менее разнообразны, тогда как интеграция профагов чаще происходит только в определенных сайтах хромосомы.

Наконец, плазмиды не обладают способностью лизировать бактерии, тогда как все фаги, включая также умеренные (в автономном состоянии), всегда вызывают лизис бактерий. Наличие перечисленных различий можно объяснить приобретением специфических преобразований бактериальными вирусами и плазмидами в ходе дивергентной эволюции.

Если в объяснениях происхождения бактериальных вирусов наметился несомненный успех, то происхождение вирусов животных и растений не имеет удовлетворительных объяснений, хотя их происхождение тоже иногда связывают с плазмидами.

Обсуждая происхождение вирусов, нельзя не привлечь внимание к одному важному моменту, заключающемуся в том, что вирусы оказывали и оказывают влияние на эволюцию организмов, в которых они паразитируют. Это влияние может выражаться как в их способности переносить генетическую информацию от одних организмов к другим горизонтально, так и в способах действовать в качестве мутагенов (см. гл. X).

Вопросы для обсуждения

1. Что собой представляют вирусы и к какой форме жизни их можно отнести?

2. Как организованы вирусы, каковы сходства и различия в организации их геномов?

3. Что понимают под ретровирусами и каковы особенности их структуры и жизненного цикла?


4. Доступны ли вирусы для классификации? Как классифицируют вирусы?

5. Назовите наиболее известные вирусы человека и болезни, вызываемые этими вирусами.

6. Назовите наиболее известные вирусы животных и чем они отличаются от вирусов человека?

7. Могут ли вирусы вызывать болезни растений?

8. Могут ли вирусы растений вызывать болезни животных?

9. Какова роль вирусов в качестве экспериментальных моделей в молекулярной биологии?

10. Что вы знаете об онкогенных вирусах?

11. Можете ли вы сформулировать гипотезу о происхождении вирусов?

12. Реально ли допущение влияния вирусов на эволюцию организмов, в которых они паразитируют? В случае положительного ответа сформулируйте доводы в пользу этого допущения.

Литература

Пехов А. П. Основы плазмидологии. М.: РУДН. 1996. 231 стр.

Филдс Б„ Найп Д. (ред.). Вирусология. М.: Мир. 1989. Т. I. 494 стр.

White D„ Ferner F. Medical Virology. Academic Press. 1994. 603 pp.

Wiedbrauk D., Farkas D. Molecular Methods for Virus Detection. Academic Press. 1995. 386 pp.

Раздел II

Живые системы: клетка, организм

«Системой можно назвать только комплекс таких

изобретательно вовлеченных компонентов, у которых взаимодействие

и взаимоотношения принимают характер взаимодействия компонентов

для получения фокусированного результата».

П. К. АНОХИН ,

1978

В широком плане под системой (от греч. systema — целое, составленное из частей) обычно понимают какую-либо совокупность взаимосвязанных, расположенных в определенном порядке частей какого-либо единого целостного образования или совокупность принципов какой-либо теории. Различают неживые и живые системы. Неживыми системами являются системы аксиом и определений, системы счислений, используемые в математике, системы информации и другие. Напротив, живые системы являются категориями биологическими.

Живые системы характеризуются рядом особенностей, которые отличают их от живых систем. Важнейшая особенность живых систем заключается в том, что их жизнь невозможна без притока в них энергии, обмена веществ и обмена информацией. Можно сказать, что они взаимодействуют со средой и по этой причине являются открытыми системами. Далее для живых систем характерна способность к самовоспроизводству, саморегуляции и самовосстановлению, в основе которого лежит способность к восстановлению повреждений собственного генетического материала. Наконец, всем живым системам присуща строгая пространственно-временная организация, позволяющая их существование во времени и пространстве и основанная на единстве структурно-функциональных связей между их частями.

Живыми системами являются клетки, ткани, органы, системы органов, организмы, популяции организмов, экологические системы, биосфера в целом. Начав с описания представлений о сущности жизни, свойствах и уровнях организации живого, в этом разделе мы остановимся на строении и функциях клеток, а также на росте, размножении и индивидуальном развитии организмов.

Глава V

СУЩНОСТЬ ЖИЗНИ, СВОЙСТВА И УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Вопрос о сущности жизни является одним из давних вопросов в биологии, поскольку интерес к нему восходит еще к античным векам. Дававшиеся в разные времена определения жизни не могли быть исчерпывающими из-за отсутствия достаточных данных. Лишь развитие молекулярной биологии привело к новому пониманию сущности жизни, определению свойств живого и вычленению уровней организации, живого.

§11 Сущность и субстрат жизни

Всеобщим методологическим подходом к пониманию сущности жизни в настоящее время является понимание жизни в качестве процесса, конечным результатом которого является самообновление, проявляющееся в самовоспроизведении. Все живое происходит только из живого, а всякая организация, присущая живому, возникает только из другой подобной организации. Следовательно, сущность жизни заключается в ее самовоспроизведении, в основе которого лежит координация физических и химических явлений и которое обеспечивается передачей генетической информации от поколений к поколениям. Именно эта информация обеспечивает самовоспроизведение и саморегуляцию живых существ. Поэтому жизнь — это качественно особая форма существования материи, связанная с воспроизведением. Явления жизни представляют собой форму движения материи, высшей по сравнению с физической и химической формами его существования.

Живое построено из тех же химических элементов, что и неживое (кислород, водород, углерод, азот, сера, фосфор, натрий, калий, кальций и другие элементы). В клетках они находятся в виде органических соединений. Однако организация и форма существования живого имеет специфические особенности, отличающие живое от предметов неживой природы.

В качестве субстрата жизни внимание привлекают нуклеиновые кислоты (ДНК и РНК) и белки. Нуклеиновые кислоты — это сложные химические соединения, содержащие углерод, кислород, водород, азот и фосфор. ДНК является генетическим материалом клеток, определяет химическую специфичность генов. Под контролем ДНК идет синтез белков, в котором участвуют РНК.

Белки — это также сложные химические соединения, содержащие углерод, кислород, водород, азот, серу, фосфор. Молекулы белков характеризуются большими размерами, чрезвычайным разнообразием, которое создается аминокислотами, соединенными в полипептидных цепях в разном порядке. Большинство клеточных белков представлено ферментами. Они выступают также в роли структурных компонентов клетки. Каждая клетка содержит сотни разных белков, причем клетки того или иного типа обладают белками, свойственными только им. Поэтому содержимое клеток каждого типа характеризуется определенным белковым составом.

Ни нуклеиновые кислоты, ни белки в отдельности не являются субстратами жизни. В настоящее время считают, что субстратом жизни являются нуклеопротеиды. Они входят в состав ядра и цитоплазмы клеток животных и растений. Из них построены хроматин (хромосомы) и рибосомы. Они обнаружены на протяжении всего органического мира — от вирусов до человека. Можно сказать, что нет живых систем, не содержащих нуклеопротеидов. Однако важно подчеркнуть, что нуклеопротеиды являются субстратом жизни лишь тогда, когда они находятся в клетке, функционируют и взаимодействуют там. Вне клеток (после выделения из клеток) они являются обычными химическими соединениями. Следовательно, жизнь есть, главным образом, функция взаимодействия нуклеиновых кислот и белков, а живым является то, что содержит самовоспроизводящую молекулярную систему в виде механизма воспроизводства нуклеиновых кислот и белков.

В отличие от живого различают понятие «мертвое», под которым понимают совокупность некогда существовавших организмов, утративших механизм синтеза нуклеиновых кислот и белков, т. е. способность к молекулярному воспроизведению. Например, «мертвым» является известняк, образованный из остатков живших когда-то организмов.

Наконец, следует различать «неживое», т. е. ту часть материи, которая имеет неорганическое (абиотическое) происхождение и ничем не связана в своем образовании и строении с живыми организмами. Например, «неживым» является известняк, образованный из неорганических вулканических известняковых отложений. Неживая материя в отличие от живого не способна поддерживать свою структурную организацию и использовать для этих целей внешнюю энергию.

Обсуждая молекулы, рассматриваемые в качестве субстрата жизни, нельзя не отметить, что они подвергаются непрерывным превращениям во времени и пространстве. Достаточно сказать, что ферменты могут превратить любой субстрат в продукт реакции в исключительно короткое время. Поэтому определение нуклеопротеидов в качестве субстрата жизни означает признание последнего в качестве очень подвижной системы.

Как живое, так и неживое построены из молекул, которые изначально являются неживыми. Тем не менее живое резко отличается от неживого. Причины этого глубокого различия определяются свойствами живого, а молекулы, содержащиеся в живых системах, называют биомолекулами.

§12 Свойства живого

Для живого характерен ряд свойств, которые в совокупности «делают» живое живым. Такими свойствами являются самовоспроизведение, специфичность организации, упорядоченность структуры, целостность и дискретность, рост и развитие, обмен веществ и энергии, наследственность и изменчивость, раздражимость, движение, внутренняя регуляция, специфичность взаимоотношений со средой.

Самовоспроизведение (репродукция ). Это свойство является важнейшим среди всех остальных. Замечательной особенностью является то, что самовоспроизведение тех или иных организмов повторяется в неисчислимых количествах генераций, причем генетическая информация о самовоспроизведении закодирована в молекулах ДНК. Положение «все живое происходит только от живого» означает, что жизнь возникла лишь однажды и что с тех пор начало живому дает только живое. На молекулярном уровне самовоспроизведение происходит на основе матричного синтеза ДНК, которая программирует синтез белков, определяющих специфику организмов. На других уровнях оно характеризуется чрезвычайным разнообразием форм и механизмов, вплоть до образования специализированных половых клеток (мужских и женских). Важнейшее значение самовоспроизведения заключается в том, что оно поддерживает существование видов, определяет специфику биологической формы движения материи.

Специфичность организации . Она характерна для любых организмов, в результате чего они имеют определенную форму и размеры. Единицей организации (структуры и функции) является клетка. В свою очередь клетки специфически организованы в ткани, последние — в органы, а органы — в системы органов. Организмы не «разбросаны» случайно в пространстве. Они специфически организованы в популяции, а популяции специфически организованы в биоценозы. Последние вместе с абиотическими факторами формируют биогеоценозы (экологические системы), являющиеся элементарными единицами биосферы.

Упорядоченность структуры . Для живого характерна не только сложность химических соединений, из которого оно построено, но и упорядоченность их на молекулярном уровне, приводящая к образованию молекулярных и надмолекулярных структур. Создание порядка из беспорядочного движения молекул — это важнейшее свойство живого, проявляющееся на молекулярном уровне. Упорядоченность в пространстве сопровождается упорядоченностью во времени. В отличие от неживых объектов упорядоченность структуры живого происходит за счет внешней среды. При этом в среде уровень упорядоченности снижается.

Целостность (непрерывность) и дискретность (прерывность). Жизнь целостна и в то же время дискретна как в плане структуры, так и функции. Например, субстрат жизни целостен, т. к. представлен нуклеопротеидами, но в то же время дискретен, т. к. состоит из нуклеиновой кислоты и белка. Нуклеиновые кислоты и белки являются целостными соединениями, однако тоже дискретны, состоя из нуклеотидов и аминокислот (соответственно). Репликация молекул ДНК является непрерывным процессом, однако она дискретна в пространстве и во времени, т. к. в ней принимают участие различные генетические структуры и ферменты. Процесс передачи наследственной информации тоже является непрерывным, но он дискретен, т. к. состоит из транскрипции и трансляции, которые из-за ряда различий между собой определяют прерывность реализации наследственной информации в пространстве и во времени. Митоз клеток также непрерывен и одновременно прерывен. Любой организм представляет собой целостную систему, но состоит из дискретных единиц — клеток, тканей, органов, систем органов. Органический мир также целостен, поскольку существование одних организмов зависит от других, но в то же время он дискретен, состоя из отдельных организмов.

Рост и развитие. Рост организмов происходит путем прироста массы организма за счет увеличения размеров и числа клеток. Он сопровождается развитием, проявляющимся в дифференцировке клеток, усложнении структуры и функций. В процессе онтогенеза формируются признаки в результате взаимодействия генотипа и среды. Филогенез сопровождается появлением гигантского разнообразия организмов, органической целесообразностью. Процессы роста и развития подвержены генетическому контролю и нейро-гуморальной регуляции.

Обмен веществ и энергии . Благодаря этому свойству обеспечивается постоянство внутренней среды организмов и связь организмов с окружающей средой, что является условием для поддержания жизни организмов. Живые клетки получают (поглощают) энергию из внешней среды в форме энергии света. В дальнейшем химическая энергия преобразуется в клетках для выполнения многих работ. В частности, для осуществления химической работы в процессе синтеза структурных компонентов клетки, осмотической работы, обеспечивающей транспорт разных веществ в клетки и вывод из них ненужных веществ, и механической работы, обеспечивающей сокращение мышц и передвижение организмов. У неживых объектов, например, в машинах химическая энергия превращается в механическую только в случае двигателей внутреннего сгорания.

Таким образом, клетка является изотермической системой. Между ассимиляцией (анаболизмом) и диссимиляцией (катаболизмом) существует диалектическое единство, проявляющееся в их непрерывности и взаимности. Например, непрерывно проходящие в клетке превращения углеводов, жиров и белков являются взаимными. Потенциальная энергия поглощаемых клетками углеводов, жиров и белков превращается в кинетическую энергию и тепло по мере превращения этих соединений. Замечательной особенностью клеток является то, что они содержат ферменты. Будучи катализаторами, они ускоряют протекание реакций, синтеза и распада в миллионы раз, при этом в отличие от органических реакций осуществляемых с использованием искусственных катализаторов (в лабораторных условиях), ферментативные реакции в клетках осуществляются без образования побочных продуктов.

В живых клетках энергия, полученная из внешней среды, накапливается в виде АТФ (аденозинмонофосфата). Теряя концевую фосфатную группу, что имеет место при передаче энергии другим молекулам, АТФ превращается в АДФ (аденозиндифосфат). В свою очередь получая фосфатную группу (за счет фотосинтеза или химической энергии), АДФ может снова превратиться в АТФ, т. е. стать главным носителем химической энергии. Такие особенности у неживых систем отсутствуют.

Обмен веществ и энергии в клетках ведет к восстановлению (замене) разрушенных структур, к росту и развитию организмов.

Наследственность и изменчивость . Наследственность обеспечивает материальную преемственность между родителями и потомством, между поколениями организмов, что в свою очередь обеспечивает непрерывность и устойчивость жизни. Основу материальной преемственности в поколениях и непрерывности жизни составляет передача от родителей к потомству генов, в ДНК которых зашифрована генетическая информация о структуре и свойствах белков. Характерной особенностью генетической информации является ее чрезвычайная стабильность.

Изменчивость связана с появлением у организмов признаков, отличных от исходных, и определяется изменениями в генетических структурах. Наследственность и изменчивость создают материал для эволюции организмов.

Раздражимость. Реакция живого на внешние раздражения является проявлением отражения, характерного для живой материи. Факторы, вызывающие реакцию организма или его органа, называют раздражителями. Ими являются свет, температура среды, звук, электрический ток, механические воздействия, пищевые вещества, газы, яды и др.

У организмов, лишенных нервной системы (простейшие и растения), раздражимость проявляется в виде тропизмов, таксисов и настий. У организмов, имеющих нервную систему, раздражимость проявляется в виде рефлекторной деятельности. У животных восприятие внешнего мира осуществляется через первую сигнальную систему, тогда как у человека в процессе исторического развития сформировалась еще и вторая сигнальная система. Благодаря раздражимости организмы уравновешиваются со средой. Избирательно реагируя на факторы среды, организмы «уточняют» свои отношения со средой, в результате чего возникает единство среды и организма.

Движение . Способностью к движению обладают все живые существа. Многие одноклеточные организмы двигаются с помощью особых органоидов. К движению способны и клетки многоклеточных организмов (лейкоциты, блуждающие соединительнотканные клетки и др.), а также некоторые клеточные органеллы. Совершенство двигательной реакции достигается в мышечном движении многоклеточных животных организмов, которое заключается в сокращении мышц.

Внутренняя регуляция. Процессы, протекающие в клетках, подвержены регуляции. На молекулярном уровне регуляторные механизмы существуют в виде обратных химических реакций, основу которых составляют реакции с участием ферментов, обеспечивающие замкнутость процессов регуляции по схеме синтез — распад — ресинтез. Синтез белков, включая ферменты, регулируется с помощью механизмов репрессии, индукции и позитивного контроля. Напротив, регуляция активности самих ферментов происходит по принципу обратной связи, заключающейся в ингиби-ровании конечным продуктом. Известно также регулирование путем химической модификации ферментов. В регуляции активности клеток принимают участие гормоны, обеспечивающие химическую регуляцию.

Любое повреждение молекул ДНК, вызванное физическими или химическими факторами воздействия, может быть восстановлено с помощью одного или нескольких ферментативных механизмов, что представляет собой саморегуляцию. Она обеспечивается за счет действия контролирующих генов и в свою очередь обеспечивает стабильность генетического материала и закодированной в нем генетической информации.

Специфичность взаимоотношений со средой. Организмы живут в условиях определенной среды, которая для них служит источником свободной энергии и строительного материала. В рамках термодинамических понятий каждая живая система (организм) представляет собой «открытую» систему, позволяющую взаимно обмениваться энергией и веществом в среде, в которой существуют другие организмы и действуют абиотические факторы. Следовательно, организмы взаимодействуют не только между собой, но и со средой, из которой они получают все необходимое для жизни. Организмы либо отыскивают среду, либо адаптируются (приспосабливаются) к ней. Формами адаптивных реакций являются физиологический гомеостаз (способность организмов противостоять факторам среды) и гомеостаз развития (способность организмов изменять отдельные реакции при сохранении всех других свойств). Адаптивные реакции определяются нормой реакции, которая генетически детерминирована и имеет свои границы. Между организмами и средой, между живой и неживой природой существует единство, заключающееся в том, что организмы зависят от среды, а среда изменяется в результате жизнедеятельности организмов. Результатом жизнедеятельности организмов является возникновение атмосферы со свободным кислородом и почвенного покрова Земли, образование каменного угля, торфа, нефти и т. д.

Обобщая сведения о свойствах живого, можно заключить, что клетки представляют собой открытые изотермические системы, которые способны к самосборке, внутренней регуляции и к самовоспроизведению. В этих системах осуществляется множество реакций синтеза и распада, катализируемых ферментами, синтезируемыми внутри самих клеток.

Свойства, перечисленные выше, присущи только живому. Некоторые из этих свойств обнаруживаются и при исследовании тел неживой природы, однако у последних они характеризуются совершенно другими особенностями. Например, кристаллы в насыщенном растворе соли могут «расти». Однако этот рост не имеет тех качественных и количественных характеристик, которые присущи росту живого. Между свойствами, характеризующими живое, существует диалектическое единство, проявляющееся во времени и пространстве на протяжении всего органического мира, на всех уровнях организации живого.

§13 Уровни организации живого

В организации живого в основном различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобальный (биосферный) уровни. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень . Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов, и стероидов, находящихся в клетках и, как уже отмечено, получивших название биологических молекул.

Размеры биологических молекул характеризуются довольно значительным разнообразием, которое определяется занимаемым ими пространством в живой материи. Самыми малыми биологическими молекулами являются нуклеотиды, аминокислоты и сахара. Напротив, белковые молекулы характеризуются значительно большими размерами. Например, диаметр молекулы гемоглобина человека составляет 6,5 нм.

Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превращаются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой (рис. 42). На этом уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

Физикохимическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом. Из групп атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тимин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК. В состав большинства белков входит 100-500 аминокислот, но последовательности аминокислот в молекулах белков неповторимы, что делает их уникальными.

Объединяясь, макромолекулы разных типов образуют надмоле-кулярные структуры, примерами которых являются нуклеопроте-иды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков). В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи непрерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают другие биологические молекулы.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, т. к. они являются основными структурными элементами клеток, катализаторами и регуляторами различных процессов, протекающих в клетках. Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма. Больше того, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, глико-лиз и другие реакции. Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим ферментом. Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последовательность азотистых оснований в молекулах ДНК.

На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул — в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ. Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей в работу — механическую, электрическую, химическую, осмотическую, механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т. к. являются материалом, из которого образуются надмолекуляр-ные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень . Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие и другие), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого ^уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются ос-иовной формой организации живой материи, элементарными еди-Вицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клетками организмов-эукариотов, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки». Надмолекулярные структуры на этом уровне формируют мембранные системы и органеллы клеток (ядра, митохондрии и др.).

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных единиц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток эукариотов значительно развиты мембранные системы (плазматическая мембрана, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы).

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды, а также пространственное разделение в клетках многих биологических молекул. Мембрана клеток обладает высокоизбирательной проницаемостью. Поэтому их физическое состояние позволяет постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические).'Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, тогда как на внутренних мембранах митохондрии осуществляется окислительное фосфорилирование.

Компоненты мембран находятся в движении. Построенным главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток — важнейшее свойство живого.

Тканевой уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточ-ностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень . Представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных орга-нелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация, защищающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень . Этот уровень представлен самими организмами — одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность орга-низменного уровня заключается в том, что на этом уровне происходит декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида. Организмы уникальны в природе, потому что уникален их генетический материал, детерминирующий развитие, функции и взаимоотношение их с окружающей средой.

Популяционный уровень . Растения и животные не существуют изолированно; они объединены в популяции. Создавая надорганиз-менную систему, популяции характеризуются определенным генофондом и определенным местом обитания. В популяциях начинаются и элементарные эволюционные преобразования, происходит выработка адаптивной формы.

Видовой уровень. Этот уровень определяется видами растений, животных и микроорганизмов, существующими в природе в качестве живых звеньев. Популяционный состав видов чрезвычайно разнообразен. В составе одного вида может быть от одной до многих тысяч популяций, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Виды представляют собой результат эволюции и характеризуются сменяемостью. Ныне существующие виды не похожи на виды, существовавшие в прошлом. Вид является также единицей классификации живых существ.

Биоценотический уровень. Представлен биоценозами — сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды. Экосистемам присуще динамическое (подвижное) равновесие между организмами и абиотическими факторами. На этом уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Биосферный (глобальный) уровень. Этот уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство, живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. связан с появлением нового качества.

Вопросы для обсуждения

1. В чем заключается всеобщий методологический подход к пониманию сущности жизни? Когда он возник и в связи с чем?

2. Можно ли определить сущность жизни? Если да, то в чем заключается это определение и каковы его научные обоснования?

3. Возможна ли постановка вопроса о субстрате жизни?

4. Назовите свойства живого. Укажите, какие из этих свойств характерны для неживого и какие только для живого.

5. Какое значение для биологии имеет подразделение живого на уровни организации? Имеет ли такое подразделение практическое значение?

6. Какими общими чертами характеризуются разные уровни организации живого?

7. Почему нуклеопротеиды считают субстратом жизни и при каких условиях они выполняют эту роль?

8. Какое содержание вкладывают в понятия «мертвое» и «неживое»?

Литература

Верная Д. Возникновение жизни М.: Мир. 1969. 391 стр.

Опарин А. В. Материя, жизнь, интеллект. М.: Наука. 1977. 204 стр

Пехов А. П. Биология и научно-технический прогресс. М.: Знание. 1984. 64 стр.

Karcher S. J. Molecular Biology. Acad. Press. 1995. 273 pp.

Murphy M. P., O'Neill L. A. (Eds.) What is Life? The Next Fifty Years. Cambridge University Press. 1995. 203 pp.

Глава VI

КЛЕТКА - ОСНОВНАЯ ФОРМА ОРГАНИЗАЦИИ ЖИВОЙ МАТЕРИИ

Клетка — это основная единица живого (биологической активности), ограниченная полупроницаемой мембраной и способная к самовоспроизведению в среде, не содержащей живых систем. Жизнь начинается с клетки. Вне клеток нет жизни.

Первые исследования клеток восходят к XVII в., и, вероятно, принадлежат англичанину Роберту Гуку (1635-1703). Рассматривая под примитивным микроскопом срезы пробки (1665 г.), он обнаружил, что они состоят из ячеек, названных им клетками (от лат. cellula — ячейка, клетка). В дальнейшем ячеистое строение многих растений микроскопически наблюдали итальянец М. Маль-пиги (1628-1694) и англичанин Н. Грю (1641-1712), однако то, что они видели, сейчас мы называем клеточной стенкой клеток растений. В 1675 г. голландец А. Левенгук (1632-1723) впервые с помощью простого микроскопа увидел одноклеточные организмы (бактерии).

В 1825 г. чех Ян Пуркинье (1787-1869) увидел и описал внутреннее содержимое клетки, назвав его протоплазмой (от греч. protos первый, plasma — образование), а в 1831 г. англичанин Р. Броун (Г773-1858) обнаружил ядро клетки (от лат. nucleus, греч. сагуоn).

Важнейшим этапом в изучении клеток явились работы, обеспечивавшие фактическую основу для создания клеточной теории. В 1838 г. немецкий ботаник М. Шлейден (1804-1881) пришел к выводу, что ткани растений состоят из клеток, тогда как немецкий зоолог Т. Шванн (1810-1882) в 1839 г. к аналогичному выводу пришел, изучая строение клеток животных. Опираясь на данные о том, что клетки животных и растений имеют ядра, М. Шлейден и Т. Шванн в 1838—1839 гг. сформулировали клеточную теорию, содержавшую ряд важнейших положений, а именно:

а) Организмы состоят из клеток и продуктов их жизнедеятельности, причем клетки являются главной структурной единицей растений и животных;

б) Размножение клеток лежит в основе роста животных и растений.

Выдающийся вклад в последующее развитие клеточной теории принадлежит Р. Вирхову (1821-1902), сформулировавшему в 1855 г. очень важное положение «cellula e cellula» («каждая клетка из клетки»), означающее, что клетка может возникнуть лишь из предсу-. ществующей клетки и что других путей появления клеток не существует. Это положение имело не только фундаментальное значение, но и практическое, т. к. означало начало разработки основ клеточной патологии.

В дальнейшем важнейший вклад в развитие клеточной теории был обеспечен открытием хромосом и наблюдениями в 1879—1883 гг. деления клеток путем митоза (В. Флеминг, 1844-1905; В. Рут 1850-1924 и другие). Уже к концу XIX в. были описаны хромосомы, определено их гаплоидное и диплоидное число у ряда организмов, а также были определены и получили название фазы митоза. Тогда же состоялся синтез цитологии и генетики, а также вычленение самостоятельной проблематики под названием «Биология клетки».

В начале XX в. (1903) Р. Гертвиг (1850-1937) формулирует закон постоянства ядерно-плазменного отношения, а в 1905 г. Дж. Фармер и Дж. Мур вводят в научную литературу термин «мейоз», что способствовало лучшему пониманию деления и развития клеток. Но особенно прогресс учения о клетке был обеспечен введением в практику исследований фазово-контрастной и электронной микроскопии, а затем и метода меченых атомов. Уже в 50-е гг. нашего века были получены электронно-микроскопические изображения почти всех структур клетки.

Современный этап в развитии клеточной теории характеризуется дальнейшим обоснованием ее положений на основе результатов, полученных при изучении тонкого строения клеток, синтеза нуклеиновых кислот и белков, а также регуляции активности генов. Окончательное подтверждение получило важнейшее положение клеточной теории о том, что клетка является элементарной структурно-функциональной единицей живого, вне которой нет жизни, т. e. клетка является элементарной единицей структуры и функции многоклеточного организма. Клетки являются высокоорганизованными дифференцированными образованиями, а размножение клеток обеспечивает физическую основу генетической непрерывности между родительскими клетками и дочерними клетками. Установлено, что активность организмов зависит от активности его клеток и что рост, развитие и дифференцировка тканей зависят от образования новых клеток. Через клетки происходит поглощение, превращение, запасание и использование веществ и энергии. Структуры клеток являются ареной, на которой осуществляются многочисленные биологические реакции, в частности, ферментация, дыхание, фотосинтез, дупликация хромосом, причем эти процессы имеют место как у одноклеточных организмов, так и в клетках многоклеточных организмов. Можно сказать, что жизнь многоклеточных организмов основывается на жизни их клеток.

Таблица 2

Основные свойства прокариотических и эукариотических клеток

Свойство

Прокариоты

Эукариоты

Капсула

имеется у отдельных видов

отсутствует

Клеточная стенка

имеется

имеется в клетках растений, отсутствует в клетках животных

Плазматическая мембрана

имеется

имеется

Ядерная мембрана

отсутствует

имеется

Количество хромосом

одна или две

от нескольких до многих

Количество групп сцепления

одна или две

от нескольких до многих

Химический состав хромосом

ДНК

нуклеопротеид

Митохондрии

отсутствуют

имеются

Деление

прямое

непрямое (митоз)

В настоящее время различают прокариотические и эукариоти-ческие клетки. Прокариотическими являются одноклеточные организмы из мира растений, представленные в основном бактериями. Напротив, эукариотическими являются в основном одноклеточные организмы животной природы, а также клетки большинства (если не всех) многоклеточных животных и растений. Как прокариотические, так и эукариотические клетки характеризуются значительным структурно-функциональным разнообразием, что определяет между ними существенные различия (табл. 2).

§14 Методы изучения клеток

Всеобъемлющим современным подходом к изучению клеток является системно-структурный подход.

Для изучения клеток используют микроскопическую технику в виде световой, фазово-контрастной, ультрафиолетовой, люминесцентной и электронной микроскопии. Последняя используется в сочетании с техникой ультратонких срезов. С целью получения трехмерных изображений клеток используют сканирующие электронные микроскопы. Для документации поведения живых клеток используют замедленную киносъемку.

В цитологических исследованиях очень эффективны цитохи-мические методы, основанные на том, что определенные реактивы (краски) избирательно окрашивают химические вещества цитоплазмы, а также ауторадиография, которая заключается во введении в клетки радиоактивных изотопов фосфора (32 Р), углерода (14 С) и водорода (3 H) с последующим обнаружением их клеточной локализации с помощью фотоэмульсий.

Для выделения клеточных компонентов используют дифференциальное центрифугирование, а для разделения биологических молекул — хроматографию и электрофорез. Рентгеноструктурный анализ позволяет определять пространственное расположение молекул различных веществ, расстояние между отдельными молекулами, объем, форму и другие свойства молекул. Метод ядерного магнитного резонанса позволяет исследования химической природы вещества.

Для изучения клеток используют также биохимические, генетические и иммунологические методы в сочетании с культивированием клеток на искусственных питательных средах. В последние годы в исследованиях клеток широко используют методы генетической инженерии.

§15 Структурно-функциональная организация

прокариотических клеток

Для прокариотических клеток характерна довольно простая структурно-функциональная организация. Вероятно, среди прока-риотов наиболее примитивно устроены микоплазмы, которые известны тем, что являются паразитами растений или возбудителями некоторых респираторных заболеваний человека и домашних животных. Считают также, что около '/д лабораторных культур соматических клеток заражены этими организмами.

Микоплазменные клетки имеют овальную форму, а их размеры составляют около 0,1-0,25 нм в диаметре (рис. 43). Для них характерно наличие тонкой наружной плазматической мембраны (толщина — около 8 нм), которая окружает цитоплазму, содержащую молекулу ДНК, достаточную для кодирования около 800 разных белков, РНК разных типов, рибосом диаметром порядка 20 нм. В их цитоплазме содержатся различные включения в виде белков, гранул ли-пидов и других соединений. Из-за недостаточной жесткости клеточной мембраны микоплазмы проходят через бактериальные фильтры.

Более сложными Прокариотическими клетками являются бактерии, цианобактерии и одноклеточные водоросли.

Как отмечено в § 4, бактерии имеют разную форму, начиная от палочек и заканчивая округлыми формами микроскопических размеров. Размеры одиночной клетки Е. coli (рис. 44) составляют 1— 3 мкм в длину и 0,5—0,8 мкм в диаметре, объем — около 1 нм8 , а масса равна Ю-12 г.

Одиночная клетка Е. coli окружена трехслойной клеточной оболочкой толщиной порядка 40 нм, представляющей собой «мешок» или «конверт», в котором заключено клеточное содержимое в виде, примерно, 2´10-18 г белка, 6´10- 16 г ДНК и 2´10-14 г РНК (в основном рибосомной РНК). В бактериальной клетке синтезируется около 2000 разных белков, большинство которых содержится в цитоплазме. Концентрация одних белков составляет 10-8 М, тогда как других — порядка 2´10-4 М (от 10 до 200 000 молекул на клетку).

«Конверт» состоит из трех частей (рис. 45), из которых две части представлены наружным и внутренним слоями, являющимися наружной и внутренней мембранами (соответственно) и построенными в основном из липополисахаридов. Внешняя поверхность наружной мембраны в основном состоит из липополисахаридов, которые прикрепляются к располагающимся там же липидам. В состав наружной мембраны входят также белки. Внутренняя мембрана, называемая цитоплазматической, состоит из многих белков, включенных в двойной фосфолипидный слой. Иногда мембраны образуют складки, называемые мезосомами. Предполагают, что они принимают участие в репликации бактериальной клетки.

Третьей частью «конверта» является пептидогликановый слой, который непосредственно представляет собой клеточную стенку толщиной порядка 40 нм, лежащую между наружной и внутренней ци-топлазматическими мембранами. Определяя форму бактериальной клетки, пептидогликановый слой в химическом плане является одиночной сложной молекулой, содержащей полисахаридные цепи, связанные с короткими пептидами. Внешняя мембрана прикреплена к пептидогликановому слою большим количеством (10е ) молекул ли-попротеида, белковый конец которых ковалентно прикреплен к ди-аминопимелиновой кислоте пептидогликана, тогда как их липид-ный конец «спрятан» во внешней мембране. На долю мембран и клеточной стенки приходится около 20% всего клеточного белка.

Пространство между наружной и внутренней мембраной, содержащее пептидогликановый слой, носит название периплазма-тического пространства. Растворение клеточных стенок сопровождается образованием так называемых протопластов, сохраняющих лишь внутреннюю мембрану. Эти структуры широко используют в экспериментальной работе.

На поверхности клеточной стенки у бактерий многих видов могут быть жгутики или жгутики и пили, а снаружи от клеточной стенки может иметься также капсула, как, например, у пневмококков. Эти структуры имеют диагностическое значение.

Основное вещество-бактерий представлено цитоплазмой, являющейся раствором белка, концентрация которого составляет 200 мг/мл. В цитоплазме бактерий имеется ядерная область, которую из-за отсутствия мембраны называют нуклеотидом. В этой области обнаруживают волокна диаметром 3—5 нм, представляющие собой скрученные двойные цепи одиночной кольцевой молекулы ДНК. Эти цепи ДНК рассматривают в качестве одиночной хромосомы. В большинстве случаев у бактерий действительно обнаруживают по одной кольцевой хромосоме, однако у бактерий ряда видов найдено по две кольцевых хромосомы (Rhodobacter sphaeroides, Brucella melitensis, Leptospira interrogans, Pseudomonas cepaeia), различающихся по размерам (одна из них является большой, другая малой), у Agrobacterium tumefaciens одна из двух хромосом является линейной.

Секвенирование ДНК ряда прокариотических организмов показало, что их геномы, вопреки простоте, характеризуются уникальностью. Например, Mycoplasma gallinarum обладает геномом, размер которого составляет 580 килооснований, тогда как Haemophilus influencae обладает геномом в 1,8 мегаоснований, но геномы этих прокариотов функционально различны. У Н. influencae количество кодирующих районов (генов) составляет 1743, из которых 1007 кодируют аминокислотный и липидный метаболизмы, биосинтез кофакторов и клеточного «конверта», синтез нуклеотидов и белков, репликацию и транскрипцию ДНК, продукцию энергии и транспорт веществ, причем на контроль метаболизма приходится 10% ДНК, транскрипции и трансляции — 17% ДНК, транспорта веществ — 12% ДНК и синтеза белков клеточного «конверта» — 8% ДНК. В противоположность Н. influencae, у которой аминокислотный биосинтез контролируется 68 генами, у М. galliriatum аминокислотный биосинтез контролируется всего лишь одним геном. Микоплазмы этого вида не имеют генов для цитохромов и ферментов цикла три-карбоновых кислот. Но они обладают рядом генов, которые кодируют адгезин, позволяющий им прекрепляться к соматическим клеткам животных и человека, в организмах которых они паразитируют.

В цитоплазме бактерий содержатся также рибосомы, которых очень много (по одним подсчетам около 10 000 на клетку, по другим — 15 000-30 000). Масса каждой рибосомы Е. coli составляет 2 х 7 х 10е дальтон, а состав определяется 65% рибосомной РНК и 35% белками. Белковая часть представлена примерно 50 различными белками. В цитоплазме содержатся различные включения в виде гранул (капель) жира, гликогена, липидов, серы. У В. megaterium в цитоплазме содержится очень много гранул поли-р-оксимальной кислоты. В бактериальных клетках обнаруживают также гранулы высокополимерной фосфорной кислоты (метахроматические гранулы).

Сходным образом организованы и одноклеточные водоросли.

§16 Структурно-функциональная организация

эукариотических клеток

Наиболее сложная организация присуща эукариотическим клеткам животных и растений. Строение клеток животных и растений характеризуется принципиальным сходством, но форма, размеры и масса их чрезвычайно разнообразны и зависят от того, является ли организм одноклеточным или многоклеточным. Например, диа-томовые водоросли, эвгленовые, дрожжи, миксомицеты и простейшие являются одноклеточными эукариотами, тогда как организмы подавляющего большинства других типов являются многоклеточными эукариотами, количество клеток у которых составляет от нескольких (например, у некоторых гельминтов) до миллиардов (у млекопитающих) на организм. Организм человека состоит из около 10 различных клеток, которые различаются между собой по осуществляемым ими функциям.

В случае человека насчитывают более 200 типов разных клеток. Наиболее многочисленными клетками в организме человека являются эпителиальные клетки, среди которых различают орого-вевающие клетки (волос и ногтей), клетки, обладающие всасывательной и барьерной функциями (в желуд очно-кишечном тракте, мочеполовых путях, роговице, влагалище и других системах органов), клетки, выстилающие внутренние органы и полости (пневмо-циты, серозные клетки и многие другие). Различают клетки, обеспечивающие метаболизм и накопление резервных веществ (гепатоциты, жировые клетки). Большую группу составляют эпителиальные и соединительнотканные клетки, секретизирующие внеклеточный матрикс (амилобласты, фибробласты, остеобласты и другие) и гормоны, а также сократительные клетки (скелетных и сердечных мышц, радужной оболочки и других структур), клетки крови и иммунной системы (эритроциты, нейтрофилы, эозинофилы, базофилы, Т-лимфоциты и другие). Существуют также клетки, выполняющие роль сенсорных преобразователей (фоторецепторы, осязательные, слуховые, обонятельные, вкусовые и другие рецепторы). Значительное число клеток представлено нейронами и гли-альными клетками центральной нервной системы. Существуют также специализированные клетки хрусталика глаза, пигментные клетки и питающие клетки, далее следует назвать подовые клетки. Известны и многие другие типы клеток человека.

В природе не существует некой типичной клетки, ибо все они характеризуются чрезвычайным разнообразием. Тем не менее все эукариотические клетки существенно отличаются от прокариотических клеток по ряду свойств и прежде всего по объему, форме и размерам. Объем большинства эукариотических клеток превышает объем прокариотов в 1000-10 000 раз. Такой объем прокариотических клеток связан с содержанием в них различных органелл, осуществляющих всевозможные клеточные функции. Для эукариотических клеток характерно также наличие большого количества генетического материала, сосредоточенного в основном в относительно большом количестве хромосом, что обеспечивает им большие возможности в дифференцировке и специализации. Не менее важной особенностью эукариотических клеток является то, что им присуща компартментализация, обеспеченная наличием внутренних мембранных систем. В результате этого многие ферменты локализуются в определенных компартментах. Например, почти все ферменты, катализирующие синтез белков в животных клетках, локализованы в рибосомах, тогда как ферменты, катализирующие синтез фосфолипидов, в основном сосредоточены на клеточной ци-топлазматической мембране. В отличие от прокариотических клеток в эукариотических клетках имеется ядрышко.

Эукариотические клетки по сравнению с прокариотическими обладают более сложной системой восприятия веществ из окружающей среды, без чего невозможна их жизнь. Существуют и другие различия между эукариотическими и прокариотическими клетками.

Форма клеток бывает самой разнообразной и часто зависит также от выполняемых ими функций. Например, многие простейшие имеют овальную форму, тогда как эритроциты являются овальными дисками, а мышечные клетки млекопитающих вытянуты. Размеры эукариотических клеток являются микроскопическими (табл. 3).

Некоторые виды клеток характеризуются значительными размерами. Например, размеры нервных клеток у крупных животных достигают нескольких метров в длину, а у человека — до 1 метра. Клетки отдельных тканей растений достигают нескольких миллиметров в длину.

Считают, что чем крупнее организм в пределах вида, тем крупнее его клетки. Однако для родственных видов животных, различающихся по размерам, характерны и сходные по размерам клетки. Например, у всех млекопитающих сходны по размерам эритроциты.

Клетки различаются также и по массе. Например, одиночная клетка печени (гепатоцит) человека весит 19-9 г.

Соматическая клетка человека (типичная эукариотическая клетка) представляет собой образование, состоящее из множества структурных компонентов микроскопических и субмикроскопических размеров(рис. 46).

Использование электронной микроскопии и других методов позволило установить чрезвычайное разнообразие в структуре как оболочки и цитоплазмы, так и ядра. В частности, был установлен мембранный принцип строения внутриклеточных структур, исходя из которого различают ряд структурных компонентов клетки, а именно:

Таблица 3

Средние размеры клеток животных и растений

Происхождение клетки

Диаметр (в мкм)

Объем (в мкм3 )

Клетка печени человека

20

4000

Малая клетка тимуса

6

120

Клетка меристемы (корешок лука)

17

2600

Клетка паренхимы плода растения

1000

1 х 108

1. Мембранная система.

2. Цитоплазматический мат-рикс (основное вещество клеток).

3. Клеточные органеллы (внутриклеточные компартменты).

4. Клеточные включения.

Мембранная система. Эта система представлена клеточной плазматической (цитоплазматической) мембраной, цитоплазматической (эндоплазматической) сетью (рети-кулом) и пластинчатым комплексом Гольджи.

а) Плазматическая (цитоплаз-матическая) мембрана имеет толщину 8-12 нм и состоит из трех слоев, два из которых являются белковыми слоями толщиной по 3 нм каждый, а третий (внутренний) — двойным фосфолипидным слоем толщиной 6 нм (рис. 47). Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. В результате этого плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а также системы транспорта аминокислот.

На поверхности плазматической мембраны обнаруживают ряд специальных образований в виде микроворсинок и ресничек. Микроворсинки очень часты в эпителии кишечника и почек. Реснички — это своеобразные выросты цитоплазмы. У эритроцитов мембрана является гладкой (элементарная мембрана). У некоторых одноклеточных организмов-эукариотов плазматическая мембрана также содержит реснички (микроворсинки), различные выпячивания, впячивания и выросты, переходящие в пузырьки. На внешней поверхности клеток животных обнаружены гликопротеиды как компоненты плазматической мембраны.

Предполагают, что поверхностные гликопротеиды обеспечивают адгезионную способность клеток в тканях, и, следовательно, слипание однотипных клеток. В мембранах эритроцитов содержится гликопротеид, получивший название гликофорина (м. м. 30 000). Этот гликопротеид состоит из 130 аминокислотных остатков и большого количества (60% всей молекулы) остатков сахара. Кроме того, в эритроцитарной мембране содержится белок спектрин, молекулы которого формируют скелет мембраны.

У клеток растений наружной структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. Клетки наружних слоев растений иногда покрыты очень тонким слоем восковидно-го вещества. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются также специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость. Считают, что рецепторные участки формируются гликопротеидами и ганглиозидами.

б) Цитоплазматическая (эндоплазматическая) сеть (рети-кулум) представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами (рис. 48).

Открыта К. Портером в 1945 г. Толщина трубочек и других структур этой сети равна 5-6 нм.

Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом диаметром порядка 21-25 нм и молекулярной массой 4 х 106 , служащих центрами синтеза молекул белков, и агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярной эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. У человека и животных агранулярной сетью богаты клетки коры надпочечников, яичников и семенников, печени, скелетных мышц.

Цитоплазматическая сеть без перерыва соединена с цитоплаз-матической мембраной, ядерной мембраной и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальной обработки они выводятся из клетки или идут на построение лизосом.

Плазматическая мембрана, мембрана эндоплазматической сети, а также ядер, митохондрий и хлоропластов (см. ниже) представляют собой чрезвычайно сложные структуры, обладающие рядом важ-.нейших биологических свойств. Многие мембраны содержат ферменты, транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток и внутри клеток, а также вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, если в них по каким-то причинам возникают повреждения.

В процессе искусственного растирания или гомогенизации клеток с экспериментальными целями образуются мелкие частицы диаметром 50—150 нм, состоящие из фрагментов эндоплазматическо-го ретикулума и плазматической мембраны. Эти структуры получили название микросом и их широко используют в лабораторной работе для решения тех или иных вопросов молекулярной организации клеток.

в) Комплекс Гольджи . Этот комплекс, называемый еще пластинчатым, был открыт итальянцем Камилло Гольджи еще в 1898 г. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом), размеры которых составляют 30-60 нм. Структурными молекулами, поддерживающими структуру цистерн, являются ферменты, вовлеченные в процессинг оли-госахаридов, белки, являющиеся аутоантителами, а также белки, являющиеся компонентами цитоскелета. Основная функция комплекса Гольджи заключается в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а также присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). В клетках печени этот комплекс участвует в выделении в кровь липопротеидов. Как отмечено выше, он участвует также и в формировании лизосом.

Цитоплазматический матрикс. Этот структурный компонент является основным веществом (цитоплазмой, гиалоплазмой) клетки. Первые электронномикроскопические изображения цитоплазмы были получены шведским ученым Ф. Шестрандом еще в 1955 г. Различают эктоплазму — вещество, располагающееся ближе к цитоплазматической мембране (твердое тело) и эндоплазму, отстоящую к центру клетки от эктоплазмы (более жидкое состояние) и представляющую собой цитозоль. Консистенция цитозоля приближается к гелю, В нем растворены многие ферменты и белки, обеспечивающие связывание и транспорт питательных веществ, микроэлементов и кислорода. Здесь же находятся аминокислоты и нуклеотиды, а также различные метаболиты (промежуточные продукты биосинтеза и распада макромолекул). Наконец, в цитозоле присутствуют различные коферменты, а также АТФ, АДФ, ионы ряда неорганических солей (K+ , Mg2+ , Са2+ , C1- , НСО-2 3 , НРО4 -2 ), тРНК.

В цитоплазме содержатся микрофиламенты (нити) толщиной 4-5 нм и микротрубочки, представляющие собой полые цилиндрические структуры диаметром 25 нм, а также филаменты промежуточных размеров. Эти структуры составляют жесткую конструкцию (каркас) в клетке, называемую цитоскелетом и определяющую внешний вид и форму клеток. Микрофиламенты состоят из белка, сходного с сократительным белком актином.

Объединяясь, микрофиламенты формируют пучки, в которые входят дополнительные белки (анкерин, спектрин и другие). Основная функция микрофиламентов заключается в обеспечении сократительных процессов клеток, в упрочении мембран. Микротрубочки построены из белков a- и b-тубулина, а также g-тубулина. Для микротрубочек характерен ряд функций. Формирование микротрубочек происходит в интерфазе клеток в так называемых центрах организации микротрубочек (ЦОМ), которые «окружают» центриоли, в результате чего предполагают, что центриоли являются ЦОМ (рис. 50). В каждом ЦСУ содержится по 10-13 молекул g-тубулина и примерно по 7 молекул других белков, включая ди-мер a/b-тубулина. Эти белки формируют структуру, которая образует микротрубочный «ансамбль». Их значение до конца не выяснено, но предположительно заключается в том, что они обеспечивают перемещение клеточных органелл, включая хромосомы, внутри клеток.

В составе цитоплазмы обнаруживают ферменты, полисахариды, АТФ, тРНК, ионы Са, Na, К и других химических элементов.

Основная функция цитоплазматиче-ского матрикса заключается в том, что он является внутренней средой клетки, поддерживающей мембранные системы, орга-неллы и включения. В нем осуществляются гликолиз, активация аминокислот и другие реакции. Цитоскелет выполняет опорную функцию. Микрофиламенты способствуют упрочению мембранной системы, а микротрубочки, как отмечено выше, обеспечивают перемещение клеточных органелл и транспорт химических соединений из одних отсеков клетки в другие. Цитоскелет имеет значение также в делении клетки.

Клеточные органеллы . Эти структуры представлены ядром, хромосомами, ядрышком, центриолями, митохондриями, рибо-сомами, лизосомами. Они характерны за некоторыми исключениями как для клеток животных, так и для клеток растений.

а) Ядро в клетке имеет форму и размеры, зависящие от формы, размеров и функций клетки. В клетках эукариотических организмов содержится, как правило, по одному ядру, реже по два и более. В зрелом состоянии эритроциты млекопитающих и клетки ситовидных трубочек покрытосеменных растений лишены ядер, тогда как клетки скелетных мышц позвоночных и млечных сосудов растений являются многоядерными. Для инфузорий характерно наличие двух ядер — одно небольшое (микронуклеус) и одно крупное политенное (макронуклеус).

Обычно ядро имеет округлую, палочковидную, четковидную вытянутую и другие формы. Размеры его колеблются от 2 до 100 мкм, а объем составляет около 65 мкм3 . Особенно крупные ядра характерны для половых клеток (размером до 500 мкм). Отношение объема ядра к объему цитоплазмы называют ядерно-плазменным отношением, которое у клеток всех типов обычно постоянно.

Строение ядра характеризуется чрезвычайной сложностью, хотя принципиально одинаково в клетках всех эукариотических организмов. В случае животных клеток ядро располагается в центре клетки. Напротив, в клетках растений оно имеет пристеночную локализацию. Однако положение, форма и размеры ядра могут меняться в зависимости от интенсивности метаболизма. В ядре содержатся хромосомы и ядрышки (см. ниже). Благодаря им ядро плотно заполнено ДНК, РНК и белками. Содержимое ядра иногда называют нуклеоплазмой или кариоплазмой. Она отделена от цитоплазмы ядерной мембраной, построенной из двух слоев (наружного и внутреннего) толщиной по 7 нм каждый и имеющей поры диаметром 40—100 нм. Поры занимают около 5% площади ядра. Через ядерные поры синтезируемая в ядре РНК выходит в цитоплазму, где она участвует в трансляции генетической информации (синтезе белков).

Ядерная мембрана и ядерные поры объединены с мембранной системой клетки, в результате чего клетка, по существу, канализирована различными проходами, обеспечивающими двухстороннее движение веществ в клетке, начиная от плазматической мембраны. В порах обнаружены глобулярные и фибриллярные белковые структуры. Количество пор зависит от вида клеток и обычно увеличивается в 8-периоде. Между мембранными слоями имеется так называемое перинуклеарное пространство шириной 20—60 нм. Наружная ядерная мембрана часто переходит в эндоплазматическую сеть. Когда клетки делятся, ядерная оболочка исчезает, а после деления восстанавливается. Ядерное вещество (кариоплазма) — плотный коллоид.

Таблица 4

Количество хромосом в соматических клетках

отдельных организмов

Вид животных м растений

Количество хромосом (в диплоидиом наборе)

Малярийный плазмодий

Plasmodium malariae

2

Плодовая мушка

Drosophila melanogaster

8

Комнатная муха

Musca domestica

12

Сазан

Cyrpinus carpio

104

Лягушка зеленая

Rana esculenta

26

Голубь

Columba livia

80

Кролик

Lepus cuniculus

44

Шимпанзе

Antropopitecus pan

48

Человек

Homo sapiens

46

Картофель

Solanum tuberosum

48

Рожь

Secale cereale

14

Пшеница (мягкая)

Triticum

42

Кукуруза

Zea mays

20

Важнейшая функция ядра заключается в том, что оно является центром управления в клетке, в нем происходит синтез ДНК, РНК и ядерных белков.

б) Хромосомы . Хромосомы располагаются в ядре. Их название введено в литературу В. Вальдейлом в 1883 г. Они имеют форму палочек, нитей, петель. Для каждой хромосомы характерны индивидуальные особенности, касающиеся длины и положения перетяжки (центромеры) по длине хромосомы. Каждая из митотичес-ких индивидуальных хромосом состоит из двух сестринских хроматид, удерживаемых центромерой. В зависимости от локализации центромер различают метацентрические, субметацентричес-кие, акроцентрические и телоцентрические хромосомы (рис. 51). Количество хромосом постоянно в ядрах соматических клеток, где они находятся в парах. Диплоидный набор хромосом называют кариотипом (от греч. caryon — ядро, type — форма, тип). Для разных организмов характерны разные по количеству диплоидные наборы хромосом (табл. 4). В зависимости от строения хромосомы человека классифицируют на группы (рис. 52).

Когда ядра соматических метафазных клеток окрашивают основными красителями, то при микроскопии препаратов в ядерной зоне обнаруживают глыбки и гранулы окрашенного вещества, получившего название хроматина. Именно из этого вещества во время деления клеток организуются хромосомы. При изучении таких микроскопических препаратов отмечают, что некоторые районы хромосом окрашены очень интенсивно, Другие слабее. Интенсивно окрашивающийся хроматин получил название гетерох-роматина, менее окрашивающийся — эухроматина. Последний содержит области, на которых очень активно синтезируется РНК.

Исследование хромосом типа ламповых щеток, содержащихся в овоцитах многих животных и политенных хромосомах, обнаруживаемых в клетках насекомых, показало, что они имеют петельную структуру. Эта структура характерна, вероятно, для организации хроматина у всех организмов.

В клетках многих видов организмов гетерохроматин концентрируется в основном в районах, фланкирующих центромеры.

Половые хромосомы часто почти полностью представлены гете-рохроматином. Гетерохроматином богаты районы повторов последовательностей ДНК (см. гл. X).

Когда гетерохроматин исследуют под электронным микроскопом, то отмечают, что он построен из плотноупакованных хрома-тиновых нитей диаметром 25 нм. Эухроматин составлен из менее плотноупакованных нитей, но такого же диаметра. Гетерохроматин сохраняется в высококонденсированной форме на протяжении всего клеточного деления, тогда как эухроматин менее конденсирован и невидим в интерфазе при исследовании хромосом в световом микроскопе. Имеющиеся данные показывают, что большинство исследованных генов эукариот локализовано в эухроматиновых (менее конденсированных) районах хромосом, тогда как гетерохроматин (высококонденсированный) генетически не активен.

Химический состав хроматина довольно прост. Он состоит из ДНК (15%), белков (75%), а также некоторого количества РНК (10%). Различают хромосомные белки двух типов — основные белки (положительно заряженные при нейтральном рН), называемые гисто-нами, и гетерогенные белки, по большей части кислые (отрицательно заряженные при нейтральном рН), называемые негистоновыми. Молекулярная масса гистонов составляет 11 000—21 000. Гистоны являются основными белками по той причине, что содержат позитивно заряженные аминокислоты аргинин и лизин в количестве от 20% до 30% аминокислотных остатков белка. Группы R аргинина и лизина позволяют гистонам действовать в качестве поликатионов и взаимодействовать с ДНК, которая является полианионной благодаря ее отрицательно заряженным фосфатным группам. Другими словами, по причине протонирования боковых групп R-остатков аргинина и лизина гистоны, соединяясь с отрицательно заряженной двухцепочечной ДНК, образуют комплексы ДНК-гистоны.

Гистоны присутствуют в хроматине всех высших эукариотов в количествах, эквивалентных количествам ДНК. У всех высших растений и животных они представлены пятью главными белками, обозначенными символами HI, Н2а, Н2в, НЗ и Н4. Количество ДНК и гистонов в хромосомах эквивалентно. Они присутствуют в клетках всех типов, кроме сперматозоидов некоторых организмов. В последних обнаруживают основные белки, называемые протами-нами. Все пять гистонов присутствуют в молярных соотношениях 1 HI : 2 Н2а : 2 Н2в : 2 НЗ : 2 Н4. Для них характерны различия по молекулярной массе и аминокислотному составу. Гистон HI богат лизином (29%), гистоны Н2а и Н2в богаты как лизином, так и аргинином, а гистоны НЗ и Н4 богаты аргинином. Для гистонов НЗ и Н4 характерно сходство последовательностей аминокислот; для других гистонов заметное сходство отсутствует. Данные о константности гистонов Н2а, Н2в, НЗ и Н4 в клетках организмов разных видов позволяют предположить, что гистоны имеют значение в упаковке ДНК. Кроме того, они не специфически вовлечены в регуляцию экспрессии генов (см. гл. XII).

Негистоновая белковая фракция хроматина состоит из различных очень гетерогенных белков. Состав этой фракции широко варьирует в клетках разных организмов даже одного и того же вида. Предполагают, что негистоновые белки также принимают участие в регуляции экспрессии специфических генов.

Каждая хроматина содержит одиночную гигантскую двухцепочечную молекулу ДНК, вытянутую по всей длине хромосомы. Это заключение основано на данных о размерах самых больших молекул ДНК в ядрах клеток дрозофилы и других организмов, а также на данных об общем количестве ДНК, присутствующей в самых больших хромосомах дрозофилы. Наиболее крупные молекулы ДНК, выделенные из хромосом, имеют контурную длину порядка 1,2 см, что соответствует молекулярной массе 2,4—3,2 х 1010 , т. е. от a /y до '/4 размера самой крупной молекулы соответствующей хромосомы. На концах хромосом человека имеются повторы азотистых оснований, получившие название теломер. Количество теломерных повторов связывают с возрастом организма.

Количество ДНК и гистонов в хроматине эквивалентно. Будучи специфически связанными с ДНК, гистоны принимают участие в формировании основных структурных субъединиц хроматина (хромосом) — нуклеосом (рис. 53), которые являются элементарными единицами организации хроматина. Каждая нуклеосома представлена сегментом ДНК диаметром около 30 нм и длиной 146-240 пар оснований, намотанной 1,8 раз вокруг гистонового стержня, состоящего из пары гистонов. Нуклеосома закручена в сложную нить 2 раза при участии гистона HI в качестве кросслинкера, что дает структуру с упаковочным отношением 25:1, близким к интерфазному хроматину. Чтобы сформировалась митотическая хромосома из нити длиной 30 нм, необходима дальнейшая компактизация с помощью специфических негистоновых белков, приводящая к формированию скелета хромосомы. Установлено, что нуклеосомы являются репрессорами инициации транскрипции в эукариотических клетках. Нарушение структуры нуклеосом ведет к освобождению транскрипции от репрессии.

В метафазных хромосомах ДНК организуется в петли длиной 30 000-40 000 пар оснований, а каждая петля хроматина прикрепляется к гистоновому скелету хромосомы на его основании в результате воздействия ДНК + белок или ДНК + РНК.

Гистон HI связан с линкерной ДНК, принимая участие в стабилизации сверхскрученных ДНК между нуклеосомами, но способ этой связи полностью еще не выяснен. Длина сегментов ДНК (линкеров), которые соединяют нуклеосомы, составляет от 15 до 100 нуклеотидных пар в зависимости от типа клетки. Результаты Х-дифракции кристаллов изолированных нуклеосом указывают на то, что они имеют дисковидную структуру и состоят из двух симметричных половин. ДНК каждой половины намотана в форме суперспирали на поверхность гистоновых стержней.

Для хромосом характерно наличие отдельных сайтов, которые определают их хрупкость, что создает условия для нарушений структуры хромосом, сопровождающихся хромосомными мутациями (см. гл. X).

в) Ядрышко — это очень мелкая структура диаметром 1—5 мкм, которая локализуется в ядре. Количество ядрышек бывает разным — от одного до нескольких. Центральная часть в ядрышке представлена фибриллярной частью (цепи, ДНК- ядрышковые организаторы и рибонуклеопротеиды) и гранулярной (формирующиеся субъединицы рибосом). Ядрышко является местом синтеза рРНК. Матрицей для синтеза рРНК является ДНК ядрышкового организатора. Синтезируемая рРНК объединяется с белком и образующиеся рибонуклеопротеиды служат затем материалом для сборки из них субъединиц рибосом. Последние через ядерные поры направляются в цитоплазму, участвуя там в формировании рибосом, на которых происходит затем синтез белков.

г) Центриоли представляют собой гранулярные цилиндры диаметром около 0,15 мкм и длиной 0,5 мкм, локализующиеся парами в клетке около ядра. Эти пары называют диплосомами (центросома-ми). Структурно они представляют систему мембранных трубочек. Диплосома окружена другими микротрубочками, называемыми центросферой. Обе эти структуры образуют клеточный центр.

Функцией клеточного центра является организация цитоскеле-та клеток. Кроме того, центриоли участвуют в делении клеток, расходясь к полюсам клетки. Микротрубочки, протягивавшиеся взаимно, образуют митотическое веретено.

В клетках растений этой органел-лы нет.

д) Митохондрии присутствуют во всех клетках организмов, которые используют для дыхания кислород. В одной клетке может находиться 50-5000 митохондрий. Они имеют форму палочек, нитей или гранул (рис. 54), а их размеры достигают 7 мкм.

Митохондрии образованы двумя мембранами — наружной и внутренней, между которыми образуется пространство шириной 10—20 нм. Внутренняя мембрана формирует складки (кристы), которые погружены в матрикс, представляющий собой молекулярное содержимое митохондрий. Наружная мембрана проницаема для низкомолекулярных соединений. Проникновение веществ во внутреннее пространство (матрикс) митохондрий контролируется внутренней мембраной. Содержимое митохондрии составляют белки, фосфолипиды, ДНК, РНК и рибосомы, которых значительно меньше, чем рибосом, локализованных в цитоплазме. Наличие этих структур обеспечивает собственную митохондриальную белоксинтезирующую систему. Митохондрии способны к самовоспроизведению путем деления или почкования в период 8-фазы и других фаз клеточного цикла.

Митохондрии имеются также у простейших. В частности, ти-паносомы содержат по одной митохондрии.

Митохондрии представляют собой «силовые станции», в которых происходят основные процессы получения и накопления энергии путем окисления молекул пищи (окислительное фосфорилиро-вание) для образования АТФ. В матриксе содержатся ферменты, а реакции окисления проходят на поверхности внутренней мембраны. Энергетические потребности клеток определяют уровень размножения митохондрии.

В клетках растений вместо митохондрии содержатся пластиды. Среди пластид различают хлоропласты, которые содержат хлорофилл, лейкопласты (бесцветные пластиды), в которых происходит накопление крахмала, и хромопласты, в которых происходит синтез пигмента плодов. У пурпурных бактерий имеются хроматофоры.

Для хлоропластов характерно мембранное строение (рис. 55). Встречаясь в клетках в количестве около 40 экземпляров на клетку, они имеют своеобразную форму двояковыпуклых линз и размеры 5-10 мкм. Каждый хлоропласт окружен двойной мембраной. Наружная мембрана является гладкой, состоя из белковых субъединиц, а внутренняя — складчатой. Внутренняя мембрана содержит хлорофилл, а также ферменты, синтезирующие АТФ и органические соединения с помощью АТФ. Кроме того, в хлоро-пластах имеется некоторое количество ДНК и РНК небольших по размерам рибосом, что обеспечивает собственную хло-ропластную белоксинтезирующую систему.

Для пластид характерны переходы из одного типа в другой. Например, зеленые хлоропласты листьев переходят в хромопласты (осенью, когда изменяется окраска листьев), а лейкопласты зеленеющих клубней картофеля переходят в хлоропласты.

е) Рибосомы представляют собой гранулы, расположенные в ци-топлазматическом матриксе и связанные с мембранами цитоплаз-матической сети. Их размеры составляют 15—Збнм в диаметре. Они построены на одну треть из белка и на две трети из РНК (двух субъединиц). Количество рибосом в клетках очень большое. Например, в одной бактериальной клетке (кишечной палочке) их содержится около 6000 экземпляров. Рибосомы образуют группы, называемые полирибосомами.

Функции рибосом заключаются в том, что на них осуществляется синтез белков.

ж) Лизосомы представляют собой мельчайшие пузырьковидные образования, окруженные однослойной мембраной и содержащие ферменты. Их размеры составляют 0,2-0,8 мкм. Лизосомы обеспечивают изоляцию гидролитических ферментов клетки.

В лизосомах обнаружено более 40 различных гидролитических ферментов (протеиназ, нуклеаз, липаз, гликоидаз и др.), осуществляющих внутриклеточное расщепление макромолекул, проникающих в клетки посредством фагоцитоза и пиноцитоза. Лизосомы чрезвычайно разнообразны по строению и частным функциям. Предполагают, что они образованы мембранами комплекса Гольджи и представляют собой систему удаления из клеток конечных продуктов обмена. Повреждение лизосом сопровождается растворением клеток. Следовательно, благодаря лизосомам происходит защита клеток от собственных ферментов. В эволюционном плане они являются аналогами пищеварительных вакуолей одноклеточных организмов.

з) Пероксисомы (иногда их называют микротельцами) представляют собой образованные цистернами эндоплазматической сети пузырьки размером 0,3-1,5 мкм, ограниченные однослойной мембраной. Эти пузырьки содержат каталазу и некоторые оксидазы. Обильными по содержанию пероксисом являются эпителии печени и почек. Функция пероксисом заключается в том, что в них происходит разрушение клеточных перекисей и холестерина. Кроме того они содержатся также в клетках зеленых листьев растений. Известны также глиоксисомы, содержащиеся в проростках семян масличных растений.

Включения . В клетках животных включения представлены жировыми каплями, гранулами гликогена, зимогеновыми гранулами (депо ферментов в клетках поджелудочной железы). Особенно богаты жиром у млекопитающих клетки соединительной ткани. Гликогена много в клетках поперечно-полосатых мышц, печени и в нейронах. Встречаются также белковые включения в цитоплазме яйцеклеток, печени, в теле простейших. Следует отметить, что некоторые клетки животных содержат в качестве включений пигменты. Например, в клетках коркового вещества надпочечников накапливаются липохромы. Пигментами являются также гемоглобин и меланин, а также ретинин (в зрительном пурпуре сетчатки глаза).

В клетках растений, например, таких как картофель, злаковые, наиболее частым включением является крахмал. В качестве включений в клетках растений встречаются также жиры, содержание которых очень большое в семенах масличных культур. Очень широко распространены пигменты.

Участки (компартменты) цитоплазматического матрикса, лишенные мембран и клеточных органелл, получили название цитозолл.

§17 Химический состав

Клеточное вещество является сложным полифазным коллоидом, т. е. представляет собой систему из двух несмешивающихся фаз. Одна из этих фаз структурно является цитоплазматическим матриксом и выполняет роль водной фазы с переходами от жидкого до твердого состояния, тогда как другая является мембранной системой и выполняет роль относительно жидкой фазы. Цитоплазма практически бесцветна, имеет характер раствора.

В элементном составе клетки насчитывают более 70 элементов, среди которых наиболее частыми являются кислород, углерод, водород, азот. На долю кислорода приходится 65% общей массы, на долю углерода — 18%, водорода — 10%, азота — 3%. После этих элементов идут кальций, фосфор, калий, сера, натрий, хлор. Поскольку все эти элементы встречаются в клетках в большом количестве, часто их называют макроэлементами. Марганец, медь, иод, кобальт и другие, обнаруживаемые в микроколичествах, называют микроэлементами.

Химические элементы, входящие в состав клеток и обладающие биологическими функциями, называют биогенными.

Как правило, содержание катионов и анионов отличается от содержания их в той среде, в которой находятся клетки. Например, концентрация К+ в мышечных клетках в несколько десятков раз выше, чем в крови. Концентрация солей в клетках определяет буферность ее содержимого, под которой понимают уровень концентрации водородных ионов в клетках (рН).

Химические элементы участвуют в построении вещества клеток в виде ионов (катионов и анионов) или химических соединений. Важными являются катионы К+ , Na+ , Са2+ , Mg2+ . Что касается анионов, то ими являются Н2 РО4 - , С1- и HCO3 - .

Соединяясь химическими связями, группы атомов образуют так называемые малые органические молекулы, которыми являются аминокислоты, нуклеотиды, сахара и жирные кислоты. Из этих малых молекул в клетках формируются макромолекулы в виде белков, нуклеиновых кислот, углеводов и липидов.

Клетки построены как из неорганических, так и органических соединений.

Неорганическими соединениями клетки являются вода и минеральные соли.

Вода составляет около 70% массы клетки. У отдельных организмов, например медуз, содержание превышает 95% . Для водных организмов характерна чрезвычайная приспособленность к воде, поскольку высокая теплоемкость воды представляет собой непрерывно действующий «тепловой» буфер, который обеспечивает в общем постоянную температуру тела независимо от температуры воздуха. В случае растений очень прочное сцепление молекул воды способствует переносу растворенных питательных веществ из корней в листья при транспирации. Наконец, на молекулярном уровне у наземных и водных животных, равно как и у растений, вода определяет ряд важных свойств макромолекул.

Таблица 4а

Химические элементы в клетках человека

(в % к сухой массе)

Кислород

65

Марганец

0,0003

Углерод

18

Медь

0,0002

Водород

10

Иод

0,0004

Азот

3

Кобальт

Следы

Кальций

1,5

Цинк

Следы

Фосфор

1

Молибден

Следы

Калий

0,35

Никель

Следы

Сера

0,25

Алюминий

Следы

Натрий

0,15

Барий

Следы

Хлор

0,15

Стронций

Следы

Магний

0,05

Титан

Следы

Железо

0,004

Литий и др.

Следы

Табл. 4б

Основные химические соединения в клетках человека

(в % к сырой массе)

Вода

75-85

Белки

10-20

Нуклеиновые кислоты

1-2

Липиды

1-5

Углеводы

0,2-2

В теле человека вода составляет 60%, из которой 40% приходится на внутриклеточную, а 20% — на экстраклеточную воду. Плазма крови содержит 5% экстраклеточной воды (рис. 56).

Вода имеет исключительно важное значение для жизнедеятельности клеток, представляя собой среду, в которой осуществляются важнейшие реакции, лежащие в основе синтеза и распада веществ. Кроме того она является растворителем различных химических веществ. Вещества, хорошо растворимые в воде получили название гидрофильных (от греч. hydros — вода, phileo — люблю), плохо растворимые называют гидрофобными (от греч. hydros- вода, phobos — боязнь). В воде хорошо растворяются хлористый натрий, сахара, простые спирты, альдегиды, кетоны. Под влиянием растворенных веществ вода может изменять свои свойства, в частности, могут изменяться температура замерзания, температура кипения, давление пара и осмотическое давление воды. Эта особенность воды имеет очень важное биологическое значение. Например, рыбы в пресной воде при температуре ее замерзания сохраняют свою активность, причем по той причине, что концентрация веществ, растворенных в крови рыб, является большей, чем в воде, и это исключает переохлаждение, а затем и замерзание их крови.

Для воды характерно то, что она обладает некоторой способностью к обратимой ионизации, в ходе которой она распадается на ионы водорода (Н+ ) и ионы гидроксила (ОН- ).

Для изменения концентрации ионов Н+ в любом водном растворе используют так называемую шкалу рН, с помощью которой обозначают концентрацию водородных ионов (Н+ ) в водных растворах, кислотность которых находится между 1,0 МН+ и 1,0 МОН- . Так значение рН для нейтрального раствора составляет 7,0, тогда как растворы, имеющие рН выше 7,0, — это щелочные растворы, а меньше 7,0 — это кислые растворы. Например, рН питьевой воды составляет 9,0, нашатырного спирта — 12,0, черного кофе — 5,0 лимонного сока — 2,0, а желудочного сока — 1,0. Величины рН характерны для всех внутриклеточных и внеклеточных жидкостей в организме, причем постоянство концентрации водородных ионов поддерживается буферными системами, которые у млекопитающих представлены фосфатной и бикарбонатной системами. Величины рН всех жидкостей организмов исключительно постоянны. Их изменения чрезвычайно неблагоприятны для организмов, поскольку даже небольшие сдвиги рН характеризуются значительным падением каталитической активности ферментов.

В воде под влиянием ферментов происходят реакции гидролиза (от греч. hydros — вода, lysis — расщепление) белков и других соединений. Вода принимает участие также в выведении из клеток продуктов обмена. Наконец, она поддерживает тепловой режим клетки.

Минеральные соли входят в состав цитоплазмы. Встречаются калиевые, натриевые, магниевые соли, соли серной, соляной, фосфорной и других кислот. Важнейшая роль минеральных солей заключается в определении ими кислотно-щелочного состояния протоплазмы. Они необходимы также для размножения клеток.

Органическими (углеродсодержащими) соединениями клетки являются белки, нуклеиновые кислоты, углеводы, липиды и АТФ. Как уже отмечено, молекулы этих соединений часто называют биологическими молекулами, а из-за их крупных размеров — макромолекулами.

Поскольку все органические соединения клетки содержат углерод, то принято считать, что жизнь на Земле построена на углеродистой основе. Замечательной особенностью углерода является то, что его атомы очень легко образуют ковалентные связи с другими атомами, в результате чего он больше других элементов способен образовывать большие молекулы. До некоторой степени такой способностью, но меньшей, обладает и кремний, что явилось основанием к известным предположениям о существовании жизни на других планетах, но на кремниевой основе.

Белки , или, как их еще называют, протеины (от греч. protos — первостепенный), являются наиболее сложными химическими соединениями, характеризующимися большой молекулярной массой. В состав всех известных белков входят углерод, водород, азот и кислород. В большинстве белков находят серу, а в некоторых белках — фосфор, железо, цинк и медь. Будучи макромолекулами, они представляют собой линейные полимеры, в которых мономерами являются аминокислоты, каждая из которых состоит из аминогруппы (-NH2 ), карбоксильной группы (-СООН), атома водорода и R-группы, присоединенной к атому углерода, который называют tt-углеродным атомом. Благодаря наличию аминогрупп и карбоксильных групп аминокислоты способны реагировать друг с другом и образовывать между собой ковалентные связи. В частности, аминокислоты соединяются одна с другой посредством соединения аминогруппы одной аминокислоты с карбоксильной группой другой аминокислоты. Возникающую между аминокислотами связь называют пептидной (амидной), а несколько соединений аминокислот называют пептидом. Т.к. первоначально образующийся дипептид содержит реакционноспособные аминогруппу и карбоксильную группы, то к нему способны присоединиться другие аминокислоты, образуя полипептид (белок). Обычно цепь из трех аминокислот называют трипептидом, а цепь из многих соединенных аминокислот называют полипептидной цепью. Следовательно, пептиды — это цепочки аминокислот. Белок может состоять из одной полипептидной цепи или нескольких. Например, миоглобин состоит из одной цепи, тогда как гемоглобин — из двух цепей одного типа и двух цепей другого типа.

Для полипептидных цепей характерна неразветвленная структура. Молекула белка представляет собой, по существу, неопределенно длинные цепи аминокислот, связанные пептидными связями:

где R-группы (боковые группы, цепи) являются радикалами, каждый из которых состоит из гидроксильной (ОН-), сульфгидриль-ной (SH-) и других групп и которые являются частью молекулы. Боковые R-группы, будучи разными по структуре, электрозаряду и растворимости в воде, определяют различия между аминокислотами.

Для аминокислот характерна ассиметричность, в результате чего различают L- и D-аминокислоты. В составе клеточных белков имеются только L-аминокислоты, известно 20 L-аминокислот. Эти аминокислоты часто называют стандартными (основными, нормальными), т. к. известны и еще другие аминокислоты, которые присутствуют в организмах, но не обнаруживаются в большинстве их белков. Такие нестандартные аминокислоты встречаются в коллагене (4-гидроксипролин и 5-гидроксилизин), миозине (N-метил-лизин), в протромбине (g-карбоксиглутаминовая кислота) и в эластине (десмозин). Предполагают, что L-аминокислоты существуют около 2 млрд лет. Из них построены белки всех известных к настоящему времени организмов. Различия между разными L-аминокис-лотами определяются боковыми R-группами, присоединенными к альфауглероду. Кроме пептидов, образующих белки, существует много пептидов, встречающихся в организмах животных и человека в виде свободных соединений, не связанных с белками. Такими пеп-тида^яи являются некоторые гормоны (инсулин, глюкагон и другие). Поскольку R-группы характеризуются разной степенью полярности (разной способностью взаимодействовать с водой при рН около 7,0), то аминокислоты классифицируют на аминокислоты, содержащие неполярные R-группы (аланин, валин, лейцин, изолейцин, пролин), полярные незаряженные R-группы (глицин, серии, треонин, цисте-ин, тирозин, аспарагин, глутамин), отрицательно заряженные (кислые) R-группы (аспарагиновая и глутаминовая кислоты), положительно заряженные (основные) R-группы (лизин, аргинин, гистидин).

Белки различаются между собой по молекулярной массе, которая для большинства из них лежит в пределах 6000-1 000 000.

Белки различаются по составу на простые и сложные. Простые белки состоят только из аминокислот, содержа 50% углерода, 7% водорода, 23% кислорода, 16% азота. В состав некоторых простых белков может входить сера в небольшом количестве.

Сложные белки помимо аминокислот содержат в своем составе другие соединения как органические, так и неорганические. Эту небелковую часть молекулы сложного белка называют простетической группой. Сложными белками являются нуклеопротеиды, липопротеиды, фосфопротеиды, металлопротеиды и гликопротеиды (табл. 5).

Таблица 5

Перечень некоторых сложных белков

Вид сложного белка

Простатическая группа

Нуклеопротеиды :

Рибосомы

РНК

РНК-содержащие вирусы

Гликопротеиды :

g-глобулин

Гексозамин, галактоза, сиаловая кислота

Липопротеиды :

Липопротеиды плазмы

Фосфолипиды, холестерин, нейтральные липиды

Фосфопротеиды :

Казеин

Фосфатная группа + остаток серина

Гемопротеиды :

Гемоглобин

Железопротопорфирин

Цитохром

Железопротопорфирин

Флавопротеиды :

Сукцинатдегидрогеназа

Флавиннуклеотид

Оксидаза D-аминокислот

Флавиннуклеотид

Металлопротеиды :

Ферритин

Тирозиноксидаза

Алкогольдегидрогеназа

Белки различаются также по структуре, которая зависит от количества входящих в их состав аминокислот (аминокислотных остатков) и последовательности (чередования) аминокислот в поли-пептиде. Одни белки построены из одной (рибонуклеаза, лизоцим), двух (бычий инсулин), трех (хемотрипсин), четырех (гемоглобин человека) и более полипептидных цепей.

Различают первичную, вторичную, третичную и четвертичную структуру белков. Первичная структура определяется отношением одного аминокислотного остатка к другому в полипептиде, т. е. последовательностью аминокислотных остатков в полипептиде (рис. 57). Вторичная структура определяется скрученностью полипептидных цепей в виде спиралей. Третичная структура характерна для полипептидных спиральных структур, образующих клубки (фибриллы). Что касается четвертичной структуры, то она возникает, когда происходит соединение между собой нескольких молекул.

В зависимости от конформации (пространственной структуры), различают глобулярные (полипептидные цепи образуют клубки) и фибриллярные белки (полипептидные цепи формируют фибриллы). Глобулярными белками являются почти все ферменты, антитела, гормоны, гемоглобин, сывороточный альбумин, тогда как фибрил-лярными являются коллаген сухожилий и костей, кератинин волос и другие.

На долю белков в цитоплазме приходится 50-70% от общего количества органических соединений. Что же касается функций белков, то они исключительно разнообразны (табл. 6).

Белки являются, прежде всего, строительным материалом, т. к. входят в состав практически всех клеточных структур. Кроме того, обладая способностью образовывать волокна, многие белки выполняют опорную функцию. Например, основу кожи, хрящей и сухожилий у млекопитающих составляет фибриллярный белок коллаген, который при кипячении в воде превращается в желатин, а связок — эластин. Химический состав волос, ногтей (когтей) и перьев определяется в основном кератином. Шелковые нити и паутина построены из белка фибреина.

Таблица 6

Некоторые белки человека и животных и их функции

Тип белка

Функция

Структурные белки:

Гликопротеиды

Образуют клеточные стенки

Белки мембран

Образуют мембраны

Белки вирусного капсида

Образуют вирусный капсид

Коллаген

Образуют фиброзную соединительную ткань

Эластин

Связки

Кератин

Кожа, перья, ногти, копыта

Ферменты

Катализируют реакции синтеза и распада

Гормоны :

Инсулин

Регулирует обмен глюкозы

Аденокортикотропный

Регулирует синтез кортикостероидов

Гормон роста

Стимулирует рост костей

Двигательные белки:

Миозин

Нити в миофибриллах

Актин

Движущиеся нити в миофибриллах

Дипеин

Движение жгутиков и ресничек простейших

Транспортные белки :

Гемоглобин

Переносит кислород (позвоночные)

Гемоцианин

Переносит кислород (беспозвоночные)

Миоглобин

Переносит кислород в мышцах

Защитные белки:

Антитела

Контролируют чужеродные белки

Комплемент

Комплексируются с антителом + антигеном

Фибриноген

Предшественник фибрина

Тромбин

Фактор свертываемости крови

Токсины :

Ботулистический токсин

Пищевые отравления

Змеиный яд

Гидролиз фосфоглицеридов

Рицин

Токсический белок клещевины

Многие белки являются ферментами (энзимами). Ферменты локализуются в митохондриях, цитоплазме, лизосомах, пероксисо-мах, на мембранах клеток и органелл. Они катализируют все протекающие в клетках реакции. Считают, что ферменты повышают скорость реакции минимум в 1 млн раз. Каждая реакция обеспечивается собственным ферментом. Например, липаза расщепляет жиры, амилаза расщепляет крахмал. В настоящее время известно более 2000 разных ферментов. В зависимости от катализируемых реакций их классифицируют на гидролазы (реакции гидролиза), нуклеазы (расщепление нуклеиновых кислот), трансферазы (перенос функциональных групп), оксидоредуктазы (окислительно-восстановительные реакции), липазы (образование связей за счет АТФ) и др.

Важнейшей особенностью белков является то, что в клетках многоклеточных организмов тысячи белков функционально связаны между собой и переносят информацию от плазматической мембраны к геному. Например; фермент в метаболическом пути «читает» концентрацию субстрата и продуцирует соответствующий уровень продукта, а рецептор на клеточной поверхности «читает» концентрацию его лиганда и продуцирует определенный уровень комплекса рецептор — лиганд.

Белки обладают регуляторной способностью. Те животные белки, которые являются гормонами, обладают способностью регулировать физиологические процессы, протекающие в клетках. Например, инсулин, являющийся белковым гормоном, продуцируемым клетками поджелудочной железы, регулирует в организме метаболизм глюкозы. Белковыми являются также гормоны, продуцируемые клетками гипоталамической части мозга и гипофизом и имеющие важное значение в росте и развитии организмов. Пара-тиреоидный гормон регулирует транспорт ионов Са^ и фосфатов. Однако заметим, что не все гормоны имеют белковую природу. У растений также известны отдельные белки, обладающие гормональной активностью. Например, такой активностью обладает индоли-луксусная кислота, которая стимулирует рост растений. Репрессорные белки участвуют в регуляции экспрессии генов.

Белки обладают двигательной и сократительной функциями, обеспечивая на молекулярном, уровне движение хромосом и сперматозоидов, на других уровнях — движение простейших, двигательные реакции у растений; сокращение скелетных мышц у многоклеточных животных (мышечные белки антин и миозин). Они выполняют также роль механической опоры. Например, высокая упругость кожи обусловлена наличием в ней коллагена.

Для белков характерна транспортная функция,. В частности, они являются транспортерами гормонов, аминокислот, липидов, саха-ров, ионов кислорода.

Белки являются источниками энергии, если происходит их распад до аминокислот. Теряя аминогруппы (дезаминируясь), белки становятся источником энергия во время, когда в клетках наступает истощение углеводных и липидных ресурсов.

Наконец, белками являются различные токсины, продуцируемые паразитами животной и растительной природы, а также змеиные яды и токсичные белки растений (рицин и другие), представляющие угрозу для животных и человека. В то же время важнейшей функцией белков является их защитная функция, поскольку иммунными антителами у животных и человека служат высокоспецифичные белки иммуноглобулины. Защитными белками можно считать также фибриноген и тромбин, которые из-за участия в свертывании крови предохраняют организм от ее потери. Кровь некоторых рыб Антарктики содержит специфический антифриз-ный белок, предотвращающий ее замерзание. Противовирусное соединение интерферон также имеет белковую природу. Наконец, некоторые белки обладают запасной пищевой функцией в семенах растений. Такие белки используются в качестве пищевых зародышами в начальный их период развития. Пищевыми белками являются альбумин (главный белок яиц птиц) и казеин (главный молочный белок).

Оценивая роль белков в жизни клеток, тканей и организмов, нельзя также не отметить, что они обладают видовой специфичностью, а это ведет к одному основополагающему заключению, сводящемуся к признанию положения «организмы делаются белками».

Нуклеиновые кислоты являются органическими соединениями, содержащими углерод, кислород, водород, азот и фосфор. Различают дезоксирибонуклеиновую и рибонуклеиновую кислоты (ДНК и РНК). Важнейшая биологическая роль нуклеиновых кислот заключается в том, что они являются хранителями генетической информации (см. главу X).

Отсылая читателя к главе X, где изложены основные сведения о нуклеиновых кислотах как генетическом материале, здесь кратко рассмотрим сведения об аденозинтрифосфорной кислоте (АТФ), которая представляет собой нуклеотид, образованный присоединением к аденозинмонофосфорной кислоте (АМФ), содержащейся в РНК, двух дополнительных молекул фосфорной кислоты (НдРО^). Другими словами, в составе АТФ содержатся аденин, рибоза и три молекулы фосфорной кислоты. АТФ синтезируется в мито-хондриях.

Выдающаяся роль АТФ определяется ее чрезвычайной важностью в обеспечении клеток энергией, которая освобождается в результате воздействия на АТФ фермента АТФ-азы, сопровождаемого в начале отщеплением одной молекулы фосфорной кислоты и образованием аденозиндифосфатной кислоты (АДФ), а затем еще двух молекул фосфорной кислоты и переходом АДФ в аденозинмо-нофосфорную кислоту (АМФ). Фосфорно-кислородные связи в АТФ (их две) называют макроэргическими, обозначая их символом Р.

Синтез АТФ происходит в митохондриях.

Углеводы — это органические соединения углерода, водорода и кислорода с общей формулой (СН2 )n , где n — представляет собой число от трех до семи. Такое название этим соединениям дал в 1844 г. К. Шмидт (1822-1894). Содержание их в клетках очень значительно. Например, содержание крахмала доходит иногда до 90% сухой массы (картофель, семена злаковых).

Различают полисахариды (С6 Н10 О5 )n , дисахариды (C12 H22 O11 ) и простые сахара — моносахариды (С6 Н12 О6 ), являющиеся малыми органическими молекулами. Две молекулы моносахарида продуцируют одну молекулу дисахарида и одну молекулу воды, тогда как из n молекул моносахарида образуется одна молекула полисахарида и (n - 1) молекул воды. Следовательно,

В зависимости от количества атомов углерода в молекуле моносахарида различают триозы (3 атома углерода), тетрозы (4 атома углерода), пентозы (5 атомов углерода) и гексозы (6 атомов углерода).

Среди триоз важное значение для животных и человека имеют такие моносахариды, как глицерин и его производные, молочная и пировиноградная кислоты.

Наиболее известной тетрозой является эритроза — промежуточный продукт фотосинтеза.

Пентозами являются рибоза и дезоксирибоза.

Среди гексоз важнейшее значение для организмов имеют глюкоза, являющаяся первичным источником энергии, а также фруктоза и галактоза. Глюкоза, или виноградный сахар, является основной частью ряда ди- и полисахаридов. В природных условиях в свободном состоянии она встречается в клетках практически всех растений. Что касается животных, то она также широко распространена, обнаруживаясь в структурных компонентах, в крови. В результате окисления глюкозы происходит ее распад до разных производных Сахаров, а затем и до CO2 и H2 O. При этом освобождается энергия и образуется восстановительная способность, запасаемая в молекулах АТФ и НАДФ. Фруктоза (плодовый сахар) в свободном состоянии встречается в плодах растений. Особенно много ее в сахарном тростнике и сахарной свекле, во фруктах, а также меде. Галактоза встречается в составе лактозы, которой много в молоке.

Дисахариды, трисахариды и тетрасахариды часто называют оли-госахаридами, среди которых очень важными для жизни организмов являются сахароза, лактоза и мальтоза. Сахароза, известная в быту как сахар, в больших количествах содержится в сахарном тростнике и сахарной свекле. Молекулы сахарозы состоят из остатков D-глюкозы и D-фруктозы. Лактоза, или молочный сахар, в большом количестве содержится в молоке. Она состоит из глюкозы и галактозы. Мальтоза встречается в составе крахмала и гликогена. Она состоит из двух молекул глюкозы и этим определяется ее биологическая важность.

Полисахариды обладают свойствами полимеров. Будучи образованными сотнями или даже тысячами моносахаридных единиц, они являются либо линейными полимерами (целлюлоза), либо разветвленными (гликоген).

Полисахаридами, состоящими из большого количества моноса-харидов, и наиболее известными и биологически важными у растений являются целлюлоза и крахмал, которые состоят из монотонно повторяющихся остатков D-глюкозы. Являясь основным структурным элементом клеточных стенок, целлюлоза обеспечивает прочность клеток зеленых растений. Известен также полисаха-рид хитин, содержащийся в клеточных стенках грибов и в скелете членистоногих. Он обеспечивает прочность их скелета. Считают, что целлюлоза является самым распространненным углеводом среди всех углеводов, известных на Земле. Крахмал содержится в большом количестве в клубнях картофеля и семенах злаковых (особенно кукурузы и пшеницы). Он построен из двух полимеров D-глюкозы (а-амилазы и пектина). Крахмал является резервным углеводом в клетках растений. В клетках животных содержится полисахарид гликоген, который тоже состоит из очень большого количества остатков D-глюкозы. Накапливаясь в печени, мышцах и других органах, он является источником глюкозы, поступающей в кровь. Этот углевод обнаруживают также в грибах.

Полисахариды, гиалуроновая кислота и пектины создают прослойку между клетками животных и растений, соответственно. Такой полисахарид, как гепарин синтезируется клетками легких, печени и других тканей и секретируется в кровь.

Известны соединения, представляющие собой комплекс сахаров с белками. Например, небольшие олигосахаридные группы, прикрепляясь через 0-гликоидную связь к -ОН-группам остатков се-рина, треонина, оксилизина или через N-гликозидную связь к амидному азоту аспарагина формируют гликопротеиды, обладающие рядом биологических функций (ферментативных, структурных, регулирующих). Если концевое звено полисахарида ковален-тно присоединению О-гликоидной связи к сериновому остатку в белке, то образующееся сложное соединение называют пептидо-гликаном. Это соединение обладает структурной функцией.

Углеводы обладают структурной функцией, причем самым распространенным структурным углеводом является целлюлоза. Другими структурными углеводными элементами являются гликоза-миногликаны (кислые мукополисахариды) и протеогликаны.

Углеводы являются важнейшим источником энергии в организме, которая освобождается в результате окислительно-восстановительных реакций. Установлено, что окисление 1 г углевода сопровождается образованием энергии в количестве 4,2 ккал. Целлюлоза не переваривается в желудочно-кишечном тракте позвоночных из-за отсутствия гидролизующего фермента. Она переваривается лишь в организме жвачных животных (крупный и мелкий рогатый скот, верблюды, жирафы и другие). Что касается крахмала и гликогена, то в желудочно-кишечном тракте млекопитающих они легко расщепляются ферментами-амилазами. Гликоген в желудочно-кишечном тракте расщепляется до глюкозы и некоторого количества мальтозы, но в клетках животных он расщепляется гликогенфосфорилазой с образованием глюкозо-1-фосфата. Наконец, углеводы служат своеобразным питательным резервом клеток, запасаясь в них в виде гликогена в клетках животных и крахмала в клетках растений.

Липиды (от греч. lipos — жир), или жиры являются соединениями, состоящими из жирных кислот и глицерола. К этим липидам относят также жироподобные вещества (воска). Жирные кислоты — это органические кислоты. Наиболее встречаемыми жирными кислотами в жирах животных и растений являются пальмитиновая (CH3 (CH2 )15 COOH), стеариновая (CH3 (СH2 )16 COOH) и олеиновая (СН3 -СН2 )7 СН-СН(СН2 )7 -СООН) жирные кислоты. Одна молекула глицерола и три молекулы жирной кислоты образуют одну молекулу липида и три молекулы воды. Например, стеарин образуется в результате реакции между одной молекулой глицерола и тремя молекулами стеариновой кислоты:

Для липидов характерно то, что они не растворимы в воде. Растворителями для них являются эфир, бензин, хлороформ и другие органические растворители.

Липиды встречаются почти во всех клетках, но в основном в небольших количествах, хотя некоторые клетки содержат эти соединения в очень больших количествах, доходящих до 90% их сухой массы. Они обнаруживаются в нервной ткани, мужских половых клетках, в семенах растений. В бараньем жире глицерол связан в основном со стеариновой кислотой, тогда как в говяжьем жире — с пальмитиновой и стеариновой кислотами. Напротив, в растительных маслах и жире лошади глицерол связан с олеиновой кислотой.

Липиды в сочетании с другими соединениями образуют более сложные соединения. Например, известны фосфолипиды (глицерол + жирная кислота + фосфатная группа), липопротеиды (комплексы липидов с белками) и другие. Названные выше липиды определяют в качестве омыляемых, т. к. нагревание их совместно со щелочами сопровождается их гидролизом с образованием мыл. Между тем известны липиды, не способные образовывать мыла. Эти липиды называют неомыляемыми или стероидами, среди которых наиболее распространенными являются стеролы (стероид-ные спирты). В тканях животных наиболее часто обнаруживается холестерол.

Липиды обладают рядом важнейших свойств в жизни клеток. Прежде всего, поскольку углеводы могут переводиться в липиды, то последние выполняют роль накопителей энергии, ибо окисление липидов сопровождается выделением энергии. Например, окисление 1 г жира сопровождается выделением энергии в количестве 9,5 ккал. При окислении образуются также углекислый газ и вода. Очень тонкий слой жира в плазматической мембране клеток выполняет защитную роль.

Очень важное значение в построении клеточных структур липиды приобрели в составе фосфолипидов, которые являются одним из основных строительных материалов мембран клеток. Важную биологическую роль в жизни клеток и организмов играют также липопротеиды. Липиды способны к запасанию в организмах в больших количествах и этим обеспечивают терморегуляцию организмов, являясь материалом для образования эндогенной воды в результате его окисления, что имеет важное значение для жизни многих животных пустынь (верблюды, мелкие млекопитающие). Являясь предшественниками в синтезе ряда гормонов, они принимают участие в регуляции важных функций организмов. Воска предохраняют кожу позвоночных от воды, у птиц они придают водоотталкивающие свойства перьям. У многих видов растений воска покрывают листья. Питаясь фитопланктоном, содержащим воска, киты и лососевые рыбы используют их в качестве главного источника липидов. Помимо соединений, рассмотренных в этом параграфе, в клетках содержатся также и другие соединения. Чтобы проявлялась каталитическая активность ферментов, для многих из них необходимо присутствие кофакторов небелковой природы, которые либо непосредственно участвуют в каталитическом процессе, либо являются промежуточными переносчиками функциональных групп от субстрата непосредственно к ферменту. Если кофакторами ферментов являются органические соединения, то их называют кофермента-ми. Предшественниками многих таких органических соединений (ко-ферментов) служат витамины, которые тоже являются органическими соединениями, присутствующими в небольших количествах в клетках растений и животных и попадающих в организм человека с пищей. К настоящему времени известно более 10 различных вята-минов, которые классифицируют на водорастворимые и жирорастворимые витамины. Водорастворимыми являются витамины B2 (тимин), B2 (рибофлавин), В6 (пиридоксин), В12 никотиновая, панто-теновая и фолиевая кислоты, биотин и витамин С (аскорбиновая кислота). Жирорастворимыми являются витамины А, Д, Е и К.

Водорастворимые витамины в качестве коферментов участвуют в катализировании многих реакций, в частности таких, как декарбоксилирование a-кетокислот (витамин В1 ), окислительно-восстановительных реакций (витамин В2 , никотиновая кислота), реакций гидроксилирования (витамин С), карбоксилирования (витамин К), переносе ацильных (пантотеиновая кислота) и многих других реакций.

Жирорастворимые витамины выполняют самые различные функции. В частности витамин А принимает участие в формировании зрительного процесса в виде альдегида витамина А, связанного с белком опсином, витамин Д регулирует обмен кальция, витамин Е участвует в защите липидов клеточных мембран от разрушения кислородом, а витамин К является кофактором реакций карбоксилирования.

Кофакторами ферментов являются также микроэлементы. В частности, для каталитического действия многих ферментов (цитохромоксидазы, каталазы, пероксидазы) необходимы ионы железа. Для действия цитохромоксидазы и лизиноксидазы необходима медь. Ионы Zn2+ присутствуют в НАД- и НАДФ-зависимых дегидрогена-зах. Другим ферментам необходимы ионы марганца (аргиназа), никеля (уреаза) или атомы молибдена и ванадия (флавиндегидрогена-зы). Некоторые микроэлементы участвуют в регуляторных реакциях. Например, хром участвует в регуляции усвоения глюкозы клетками животных тканей, а олово необходимо для кальцификации костей. Бор и алюминий необходимы для развития растений.

Наконец, в клетках в очень небольших количествах встречаются аминокислоты в свободном состоянии (свыше 150), которые не встречаются в составе белков.

§18 Размножение клеток

Размножение или пролиферация (от лат. proles — потомство, ferre — нести) клеток — это процесс, который приводит к росту и обновлению клеток. Данный процесс характерен как для одноклеточных, так и многоклеточных организмов.

Клетки-организмы (одноклеточные организмы) размножаются простым делением надвое (бактерии, саркодовые), множественным делением (споровики и др.) или другим путем. Поэтому у бактерий и одноклеточных животных удвоение клеток представляет собой размножение их как самостоятельных организмов, поскольку из исходной формы (организма) образуется две новые клетки, каждая из которых является организмом. Каждая дочерняя клетка (организм) получает полную генетическую информацию, несомую исходной клеткой-организмом.

Соматические клетки многоклеточных организмов размножаются путем сложного деления, которое получило название митоти-ческого деления и которое в общем виде представляет собой механизм, посредством которого одиночные клетки репродуцируют себя. Образовавшиеся в результате деления дочерние клетки подобны исходной (материнской) клетке, отличаясь от последней лишь меньшими размерами. Однако вслед за делением дочерние клетки мгновенно начинают расти и быстро достигают размеров материнской клетки.

Биологический смысл митотического деления состоит в том, что оно является ключевым событием в точной репликации всех хромосом еще до того, как произойдет деление ядра и клетки. В результате митоза дочерние клетки после деления получают хромосомы в точно таком же количестве, какое имела их родительская (материнская) клетка. Следовательно, митотическое деление есть особый способ упорядоченного деления клеток, при котором каждая из двух дочерних клеток получает хромосомы в точно таком же количестве и точно такого же строения, что и хромосомы, которые имела материнская клетка. При каждом митозе образуется копия каждой хромосомы и действует точный механизм их распределения между дочерними клетками.

В митотическом делении клетки различают две стороны — разделение исходного ядра на два дочерних ядра (равное деление хромосом), называемое кариокинезом (от греч. caryon — ядро, kinesis — движение) и представляющее собой, по существу, хромосомный цикл, и следующее затем разделение цитоплазмы с образованием двух дочерних клеток, называемое цитокинезом (от греч. cytos — клетка, kinesis — движение) и представляющее собой цитоплазматический цикл. Каждая из дочерних клеток содержит одно дочернее ядро.

Кариокинез и цитокинез протекают синхронно, причем в кариоки-незе имеет место чередование синтеза ДНК с митозом, тогда как цитокинез чередуется с ростом клеток (удвоением в числе клеточных компонентов).

Существенной особенностью митотического деления является то, что оно в значительной мере сходно у всех организмов. Совокупность процессов, происходящих в клетке от одного деления до другого, получило название митотического цикла.

Митотический цикл состоит из двух стадий — стадии покоя или интерфазы и стадии деления или митоза (от греч. rnitos — нить), обозначаемого символом м. Термины «митоз» и «кариокинез» — синонимы. Интерфаза доступна для оценки качественно и количественно, точно так же доступен для измерения и митоз. В частности, для измерения интенсивности количества митозов используют так называемый митотический индекс, под которым понимают число митозов на 1000 клеток. Данные о митотическом индексе имеют важное практическое значение, особенно в медицинской практике (в оценке интенсивности регенерации органов, действия лекарственных веществ и т. д.).

Интерфаза предшествует митозу, и функциональное содержание ее заключается в том, что в ней происходит синтез ДНК (рис. 58), причем ее длительность составляет не менее 90% в течение всего клеточного цикла. Различают три последовательных периода интерфазы, а именно: пресинтетический, синтетический и постсинтетический.

Пресинтетический период (G1 ), который часто называют еще первым интервалом (от англ. gap — интервал), является начальным периодом интерфазы. В этот период ДНК еще не синтезируется, однако происходит накопление РНК и белков, в том числе и белков, необходимых для синтеза ДНК. Увеличивается количество митохондрий. Обычно этот период длится 12-24 часа.

Синтетический период (S) следует за G1 -периодом и характеризуется тем, что в этот период в клетке происходит синтез (репликация) ДНК, в результате чего количество ее удваивается. В этот период продолжается также синтез РНК и белков. Очень важно, что к концу этого периода каждая из хромосом удваивается и состоит уже из двух сестринских хроматид, удерживаемых центромерои. Можно сказать, что наиболее фундаментальной особенностью S-периода является репликация генов и удвоение набора генов каждой дуплицированной хромосомы. Длительность S-периода обычно составляет около 5 часов.

Постсинтетический период (G2 ) характеризуется остановкой синтеза ДНК и накоплением энергии. Однако продолжается синтез РНК и белков, формирующий нити веретена деления. Длительность G2 -периода составляет 3—6 часов.

Митоз совершается на протяжении четырех последовательных фаз, а именно: профазы, метафазы, анафазы и телофазы (рис. 59.).

В профазе в начале происходит конденсация и спирализация (скручивание) хромосом, в результате чего они становятся видимыми при микроскопии окрашенных препаратов. Увеличивается диаметр каждого завитка. Ядерная мембрана растворяется под действием ферментов, ядрышко исчезает. Центросома делится на две центриоли, после чего последние расходятся к полюсам клетки. Отмечается также фосфорилирование отдельных клеточных белков. Затем между полюсами начинает формироваться ахромати-новая фигура, похожая на веретено. Оно состоит из белка и РНК. К концу этой фазы ахроматиновая фигура вытягивается вдоль клетки, становясь веретеном. Структурно веретено представляет собой двухполюсную структуру, построенную из микротрубочек и различных белков. Хроматиды (сестринские хроматиды) удерживаются вместе центромерои. Длительность профазы составляет примерно 30-60 минут.

В метафазе хромосомы располагаются на экваторе веретена. Они имеют вид толстых образований, плотно свернутых спиралью, что облегчает подсчет и изучение их структуры с помощью микроскопа. Будучи прикрепленными к нитям веретена центромерои, к которой прикрепляются особые белковые комплексы (кине-тофоры), связанные с отдельными микротрубочками хроматиды, пока удерживаются вместе, но плечи их уже разъединены. Длительность метафазы составляет 2—10 минут.

В анафазе наступает разделение кинетохоров, а затем и продольное разделение хромосом, в результате чего каждая сестринская хро-матида имеет собственную центромеру и становится дочерней хромосомой. Хромосомы удлиняются и двигаются к соответствующим полюсам веретена. Анафаза длится 2-3 минуты. Репликация хромосомных концов (теломер), длина которых составляет 2—20 кб., требует теломеразы.

В телофазе (от греч. telos — конец) дочерние хромосомы достигают полюсов, вытягиваются и деспирализуются. Кинетохорные трубочки исчезают. Образуется ядерная оболочка, вновь появляется ядрышко. Длительность составляет 20-30 минут.

На заключительном этапе клеточного деления происходит ци-токинез, который начинается еще в анафазе. Этот процесс заканчивается образованием в экваториальной зоне клетки перетяжки, которая разделяет делящуюся клетку на две дочерние клетки. Перетяжка обеспечивается сокращением кольца, сформированного филаментами актиновой природы.

В отличие от соматических клеток животных в клетках растений из-за ригидности их стенок вместо образования сократительного кольца формируется пластинка между будущими дочерними клетками. На каждой из сторон этой пластинки откладывается целлюлоза, после чего она становится клеточной стенкой.

Каждое клеточное деление является непрерывным процессом, поскольку ядерные и цитоплазматические фазы, вопреки различиям в содержании и по значению, координированы во времени.

Упорядоченность клеточных делений у эукариотов зависит от координации событий в клеточном цикле. У эукариот эта координация осуществляется путем регуляции трех переходных периодов в клеточном цикле, а именно: вступление в митоз, выход из митоза и прохождение через пункт, называемый «Старт», который вводит инициацию синтеза ДНК ( S-фазу) в клетке.

Продолжительность митотических циклов разных клеток различна и составляет от нескольких часов до нескольких дней. Однако она зависит от типа тканей, физиологического состояния, внешних факторов (температура, свет).

Клеточный цикл эукариотических клеток регулируется последовательной активацией циклинзависимых киназ (СДК) путем взаимодействия их с белками-циклинами. Комплекс циклин-СДК оказывается полностью активированным фосфорилированием треонинового остатка в Т-петле СДК, осуществляемым специфической СДК-активирующей киназой (САК). При этом комплекс циклин-СДК вовлекается в инициацию как митоза, так и репликации ДНК. Регуляция митоза зависит от регуляции СДК.

Существуют и другие регуляторы клеточного цикла. В частности известны регуляторы, ингибирующие СДК. Такими ингибиторами являются белки р21, р16 и р27. Они ингибируют функции киназ также путем связывания с ними.

Хромосомная ДНК в клетках организмов-эукариотов реплици-руется лишь один раз в клеточном цикле. Поэтому давно возник вопрос о механизме, ограничивающем лишь один раунд репликации ДНК в клеточном цикле. Предполагают существование так называемого лицензирующего фактора репликации (licensing factor), который позволяет репликацию. В подтверждение этого взгляда установлены лицензирующие белки MSM, которые обычно связаны с хромосомами, но с началом S-фазы освобождаются от этой связи, позволяя репликацию ДНК, а после того, как синтез ДНК завершается, вновь связывается с хромосомами.

Разные ткани характеризуются разной митотической активностью. Поэтому в зависимости от митотической активности различают стабильные, растущие и обновляющиеся ткани. Стабильные ткани — это ткани, в которых клетки не делятся, а количество клеточной ДНК постоянно. Например, клетки центральной и периферической нервной системы не делятся. В этих клетках происходят лишь возрастные изменения. Растущие ткани — это ткани, в которых клетки живут всю жизнь, но среди последних имеются такие, которые делятся посредством митоза. В результате этого наступает увеличение размеров органов. Примером растущих тканей являются ткани почек, желез внутренней секреции, скелетная и сердечная мускулатуры. Обновляющиеся ткани — это ткани, в которых многие клетки подвержены митозам, в результате чего погибающие клетки компенсируются вновь образующимися. Примерами обновляющихся тканей являются клетки желудочно-ки-шечного, дыхательного и мочеполового трактов, эпидермиса, костного мозга, семенников и др. Для митозов характерны суточные колебания, волны.

У высших организмов митотическое деление клеток обеспечивает их рост с последующим увеличением массы тела и дифференциацией клеток. По мере индивидуального развития человека количество его клеток увеличивается, достигая у взрослого человека более чем 10 клеток и оставаясь затем константным.

Как уже отмечено, митохондрии и хлоропласты способны к делению в клетках эукариотов, но контроль их деления не ясен. Установлено лишь, что в геноме клеток растений существует ген, который, возможно, принимает участие в контроле деления хло-ропластов.

Для деления клеток млекопитающих и птиц характерно то, что оно имеет определенные ограничения количества клеточных удвоений. Например, фибробласты плодов человека удваиваются лишь на протяжении 50 генераций, тогда как фибробласты от людей в возрасте 40 и 80 лет подвергаются примерно 40 и 30 удвоениям соответственно, если их культивируют в стандартных условиях. Это явление получило название старения клеток. Считают, что в организме также большинство клеток стареет, например, клетки печени живут около 18 месяцев, эритроциты — 4 месяца, в результате чего в них накапливаются липиды, кальций, пигмент «изнашивания» и они гибнут. Подсчитано, что организм взрослого человека ежедневно теряет около 1-2% своих клеток в результате их гибели. После смерти клетки в ней происходит коагуляция протоплазмы, распад митохондрий и других органелл в результате ауто-лиза (активации внутриклеточных ферментов).

Для объяснения природы старения клеток предложено несколько гипотез, в которых придается значение ошибкам биосинтетических механизмов клеток, механизмам защиты от злокачественного перерождения нормальных клеток или другим причинам. Однако ни одна из известных гипотез не является исчерпывающей в объяснении феномена старения клеток.

Установлено, что для клеток во многих случаях характерен апоптоз, под которым понимают генетическую программу, в результате которой клетки совершают суицид. Можно сказать, что апоптоз — это эволюционно сохраняемый процесс. С помощью этого процесса многоклеточные организмы освобождаются от излишних или потенциально вредных клеток. Этот феномен отличен от старения клеток. На примере нематоды Caenorhabditie elegans было выяснено, что клеточный суицид контролируется генным набором, состоящим из трех генов, контролирующих синтез белка СЕД-3, СЕД-4 и СЕД-9, регулирующих апоптоз. У млекопитающих выявлены белки-2, которые регулируют апоптозную смерть клеток. Полагают, что апоптоз имеет значение в этиологии многих наследственных болезней (болезнь Альцгеймера и Др.), аутоиммунных нарушений, сердечно-сосудистых болезней, возрастных нарушений и даже СПИДа.

Однако погибающие клетки замещаются новыми. Считают, что клеточное содержание организма человека обновляется примерно каждые семь лет. Особенно сильно замещение клеток происходит в крови за счет интенсивного образования кровяных клеток в кроветворных тканях. Применительно к другим видам клеток процесс обновления происходит с очень высокой скоростью. Например, эпителий желудка и кишечника крыс обновляется каждые 72 и 38 часов соответственно, эпителий тонкого кишечника человека — каждые 7-8 дней. Однако нервные клетки функционируют (живут) на протяжении всей жизни организмов.

Наряду с делением клеток путем митоза известен амитоз (от греч. а — не, mytosia — деление ядра), под которым понимают прямое деление ядра клетки. При амитозе сохраняется интерфазное состояние ядра, ядрышко, ядерная мембрана. Ядро клетки делится на две части без формирования веретена, в результате чего образуется двухъядерная клетка. Амитоз встречается иногда в клетках скелетной мускулатуры, кожного эпителия, соединительной ткани. Однако считают, что амитоз является аномальным механизмом в размножении клеток.

Считают, что митотический цикл у высших организмов является результатом эволюции разделительного механизма эукарио-тов. В пользу этого предположения свидетельствуют результаты сравнения разделительных механизмов бактерий, некоторых водорослей, дрожжей, простейших и млекопитающих. Это сравнение показывает, что усложнение митотического аппарата происходит по мере усложнения организации и функций организмов, принадлежащих к разным систематическим группам.

§19 Ткани животных и растений

Для клеток многоклеточных организмов характерна специализация и объединение, в результате которых они образуют структуры, получившие название тканей, из которых формируются органы. Впервые термин «ткань» был использован англичанином Н. Грю еще в 1671 г. С тех пор эти системы стали предметом изучения ученых — гистологов многих поколений. В наше время под тканью понимают систему объединенных клеток и их производных, выполняющих сходные специализированные функции. К этому следует добавить, что ткани являются результатом развития живых форм в ходе филогенеза и онтогенеза.

Клетки объединяются в составе тканей с помощью разных механизмов — «прикрепительных» и «коммуникационных». «Прикрепительный» механизм заключается в том, что клетки с помощью рецепторов адгезии (адгезинов) могут присоединяться к так называемому внеклеточному матриксу, представляющему собой сеть органических молекул (фибриллярных белков) и лигандов, погруженных в полисахаридный гель. Основным белком во внеклеточном матриксе является коллаген, полимерные формы которого сосредоточены в коже, сухожилиях, хрящах, кровеносных сосудах, внутренних органах и т. д. Важнейшей особенностью молекул коллагена является то, что им присуща трехцепочечная спиральная структура. Они могут связываться между собой межклеточными соединениями в виде адгезионного соединения или разных клеточных контактов (десмосом) или контактов между межклеточным матриксом и клетками (полудесмосом).

Помимо «прикрепительных» соединений для клеток в тканях характерны «коммуникационные» соединения, наиболее распространенные из которых получили название щелевых контактов. Различают несколько видов таких контактов. Они могут быть представлены щелями между плазматическими мембранами соседних клеток, заполненными рыхлой сетью органических молекул (внеклеточным матриксом), что обеспечивает щелевой контакт клеток. Далее, щелевые контакты могут иметь вид выпячиваний (выроста) плазматической мембраны одной клетки в плазматическую мембрану другой клетки и слипанием этих выпячиваний. Щелевые контакты позволяют малым молекулам переходить из одних клеток в другие. В случае нервных клеток имеют место синапсы, позволяющие передачу электрических и химических сигналов от одной клетки к другой. Важно подчеркнуть, что любой из названных межклеточных контактов основан на межмембранных связях.

Механизм объединения клеток растений является другим. Поскольку у них нет плазматической мембраны, но есть клеточная стенка, которая содержит каналы, то соединение соседних клеток обеспечивается соединением их цитоплазматическими мостиками (плазмодесмами), представляющими собой цитоплазму, проникающую через каналы.

Организация тканей связана с наличием у клеток обмена информацией, который достигается выделением клетками химических веществ, выполняющих функцию сигналов для других клеток, наличием на поверхностной мембране клеток сигнальных молекул, влияющих на другие клетки при их контакте, и щелевых контактов, позволяющих обмен малыми молекулами.

Химическая сигнализация осуществляется с помощью сигнальных молекул, в частности, гормонов, выделяемых эндокринными клетками и воздействующих через кровь на клетки-мишени, а также с помощью локальных химических медиаторов, действующих только на ближайшие (соседние) клетки. В случае нервной системы клетки секретируют нейромедиаторы. Примерами белковых гормонов являются инсулин, соматотропин, адренокортикотропный гормон, тогда как стероидными гормонами являются эстрадиол, тестостерон, кортизол и другие. Сигнальными молекулами являются также некоторые олигопептиды (соматостатин, вазопрессин и др.), адреналин и нейромедиаторы (глицин, ацетилхолин и др.). Примером локальных сигнальных молекул является гистамин, выделяемый клетками соединительной ткани (тучными клетками). Сигнальные молекулы еще называют лигандами. Они связываются со специфическими белковыми рецепторами на поверхности клеток-мишеней, в результате чего акт связывания генерирует сигнал, влияющий на поведение клеток, в частности на их кооперацию, ведущую к образованию тканей. Сигнальными молекулами, синтезируемыми на мембранной поверхности клеток, являются простагландины. Они очень быстро синтезируются и очень быстро разрушаются.

Образование тканей (гистогенез) у животных происходит из эктодермы, энтодермы, мезодермы и мезенхимы в период эмбриогенеза, а основными элементами тканей, как отмечено выше, являются клетки и их производные в виде неклеточных структур. Таким образом, ткань можно определить в виде сообщества клеток и их производных со специализированными функциями.

В рамках классификации тканей, основанной на морфофунк-циональном принципе, у животных и человека различают 5 типов тканей, а именно: эпителиальную, соединительную, мышечную и нервную ткани, а также кровь и лимфу.

Эпителиальная тканъ , или эпителий, состоит из клеток, покрывающих поверхность тела, внутренние поверхности внутренних органов (желудок, мочевой пузырь и др.), поверхности серозных оболочек (брюшина, плевра, перикард), а также из клеток, образующих некоторые железы (слюнные железы, поджелудочная железа и др.). Поэтому различают покровный и железистый (секреторный) эпителий. Из эктодермы развивается эпителий кожи, из энтодермы — эпителий желудка, кишечника, легких и др., а из мезодермы — эпителий почек, серозных оболочек и других структур.

Среди покровных эпителиальных тканей различают плоский, кубический, призматический и ресничный эпителий (рис. 60).

Плоский эпителий представлен уплощенными клетками, которые образуют поверхностный слой кожи и выстилают ротовую полость, пищевод и влагалище. Как правило, плоский эпителий является многослойным, образует слизистые оболочки пищевода, влагалища, эпидермис кожи и др.

Кубический эпителий представлен кубовидными клетками, которые выстилают почечные канальцы, наружную поверхность яичника и другие органы.

Призматический эпителий представлен клетками цилиндрической формы, им выстлан желудок, кишечник, матка и другие органы.

Ресничный эпителий представлен клетками, на поверхности которых имеются реснички. Биение этих ресничек обусловливает перемещение слизи и других веществ по эпителиальному слою.

Железистый эпителий представлен клетками призматической или кубической формы, которые продуцируют секрет. Они функционируют либо как одноклеточные железы, секретируя разные секреты, либо формируют многоклеточные железы, получившие название эндокринных желез, т. к. они выделяют продукты своей деятельности (гормоны) в кровь и лимфу.

Соединительные ткани представлены собственно соединительной, костной и хрящевой тканями, развивающимися из мезенхимы. Они состоят из клеток и межклеточного вещества. Исходя из структуры и свойств межклеточного вещества, различают несколько типов этой ткани.

Волокнистая соединительная ткань представляет собой волокна (коллаген) и межклеточное вещество (протеогликаны и гликопротеиды), окружающие соединительнотканные клетки (фибробласты, макрофаги, тучные клетки) и являющиеся продуктом этих клеток. Эта ткань образует строму многих внутренних органов, основу слизистых оболочек, соединяет кожу с мышцами, участвует в формировании надкостницы.

Костная ткань формирует скелет организма. Она состоит из костных клеток (остеоцитов, остеобластов и остеокластов) и выделяемого ими основного вещества кости, содержащего белки, из которых преобладающим является коллаген, и соли кальция (рис. 61).

Хрящи также формируют скелет (в эмбриональном состоянии). У взрослых хрящевой скелет имеется лишь у акул и скатов. Хрящевая ткань состоит из клеток (хондриоцитов, прехондроблас-тов и хондробластов) и межклеточного вещества (в основном коллагена).

Соединительные ткани выполняют опорную, трофическую, защитную и другие функции.

Кровь и лимфа являются тканями, которые начинают развиваться уже в эмбриональном периоде жизни организмов из мезенхимы, а затем из так называемых полипотентных стволовых клеток крови (СКК). У человека развитие первых клеток крови идет синхронно с сосудами, развивающимися вначале в стенке желчного мешка, а затем в печени, красном костном мозге, тимусе, селезенке, лимфатических узлах эмбриона. Образование крови и лимфы происходит и на протяжении всего постэмбрионального периода. Важнейшими функциями крови являются трофическая, дыхательная и транспортная.

Кровь является очень сложным образованием, составляющим у человека примерно 5-9% массы тела. В ее составе различают плазму и форменные элементы — эритроциты, лейкоциты и тромбоциты (кровяные пластинки).

Плазма крови состоит на 90—93% из воды, в которой содержатся белки, углеводы, жиры и минеральные вещества.

Эритроциты, или красные кровяные тельца (шарики), представляют собой безъядерные овальные клетки, диаметр которых составляет 7,1-7,9 мкм (рис. 62). 1 мл крови мужчины содержит 3,9— 5,5 х 109 эритроцитов, а 1 мл крови женщины — 3,7—4,9 х 109 . Основной функцией эритроцитов является транспортировка кислорода и углекислоты.

Лейкоциты (белые кровяные клетки) подразделяют на гранулоциты и агранулоциты. В составе гранулоцитов на основе отношения их к красителям различают нейтрофилы, эозинофилы и базофилы. В составе агранулоцитов различают лимфоциты и моноциты. Лимфоцитов в крови довольно много (20—35%). Они очень полиморфны. Их размеры составляют 4,5—10 мкм. Поскольку для них характерно разное происхождение, то различают Т-лимфоци-ты, образование которых происходит в тимусе, и В-лимфоциты, образующиеся в красном костном мозге. Эти лимфоциты различаются и по функциям (см. § 96).

Моноциты являются клетками размером 18-22 мкм. Их доля среди лейкоцитов составляет 6—7%. Эти клетки постоянно мигрируют в соединительную ткань, где они дают начало макрофагам.

Лейкоциты выполняют защитную функцию (участвуют в формировании иммунитета).

Тромбоциты (красные кровяные пластинки) — это безъядерные тельца размером 2—3 мкм, содержание которых в 1 мл крови человека равно 3 х Ю8 . Являясь составной частью тромбоксилазы, они принимают участие в свертывании крови.

Лимфа, подобно крови, также состоит из жидкой части и форменных элементов. Жидкой частью является лимфоплазма, а форменные элементы представлены в основном лимфоцитами. В лимфе встречаются также моноциты, но в небольшом количестве. Основная функция лимфы заключается в регулировании циркуляции лимфоцитов, а также оттока различных жидкостей и находящихся в ней метаболитов от органов.

Мышечная ткань образована мышечными клетками (миоцита-ми), являющимися структурно-функциональными единицами многоядерных мышечных волокон — миофибрилл. Эти волокна образуются в результате слияния миоцитов. Установлено, что слияние обеспечивается несколькими белками (кадгеринами, интегринами, меятринами). Различают гладкую и поперечно-полосатую мышечную ткань (рис. 63), которые различаются между собой по строению миофибрилл. Гладкие мышцы построены из вытянутых сигароподобных клеток (миоцитов). Они формируют мышечные слои стенок сосудов, бронхов, желудка, кишечника и т. д. Поперечно-полосатая мышечная ткань представлена скелетной мышечной тканью. Скелетные мышцы прикрепляются к костям. Сердечная мышечная ткань представлена сократительными кардиомиоцитами. Сократительная способность мышц обеспечивается по той причине, что сократительные структуры (миофибриллы) содержат миозин и актин.

Нервная ткань формируется из эктодермы и представлена нейронами (нейроцитами), которые являются клетками, проводящими электрические импульсы, и клетками нейроглии (рис. 64).

Нейрон состоит из тела, в котором содержится ядро, и отходящих от тела двух или более отростков. Те отростки, которые проводят нервные импульсы от тела нейрона к периферии, получили название аксонов, а те, которые проводят импульсы к телу нейрона, названы дендритами. Нейроглия представлена клетками, выстилающими полости головного и спинного мозга и образующими оболочки нейронов и их отростков, а также клетками, встречающимися на поверхности тела нейронов и нервных ганглиев, в нервных окончаниях. Нервными волокнами являются отростки нервных клеток и глиальные оболочки.

Нервная ткань составляет основной компонент нервной системы, главные функции которой заключаются в регуляции функционирования тканей и органов, а также координации связи организмов с окружающей средой.

Клетки почти всех высших растений также специализированы и организованы в ткани. У растений различают меристематичес-кую (образовательную), покровную (защитную), основную и проводящую ткани.

Меристематические ткани представлены мелкими клетками с крупными ядрами, в которых очень высок уровень метаболизма (рис. 65). Эти клетки способны к делению, что обеспечивает рост растений в течение длительного периода. Кроме того, они дают начало тканям остальных типов, т. к. происходит их дифференциация в ткани других типов. Меристема имеется в зародыше, на кончиках корней, а также в тех частях растения, которые очень быстро растут, и в камбии. Меристемы осевых органов растений обеспечивают их рост в длину, тогда как меристемы стебля и корня ответственны за их рост в толщину. В частности деление клеток камбия сопровождается ростом стебля в толщину. Слои клеток древесины, выросшие в течение сезона (весна, лето и осень), образуют так называемое годичное кольцо прироста.

Покровные ткани представлены плотно сомкнутыми клетками, располагающимися на внешней поверхности растений (рис. 66). К этим тканям относят эпидерму листьев, а также пробковые слои стебля и корней. Они выполняют защитную функцию, предохраняя от высыхания или механических повреждений лежащие глубже тонкостенные клетки.

Основные ткани представлены различными по форме клетками, образующими основную массу тела растений (мягкие части листьев, цветков, плодов, сердцевину стеблей и корней, а также кору). Главная функция этих тканей заключается в синтезе и накоплении питательных веществ. В частности, часть этих тканей представлена хлоропластосодержащими клетками, в которых происходит фотосинтез.

Проводящие ткани (рис. 67) представлены ксилемой (древесина) и флоэмой (луб). Клетки ксилемы дают начало длинным клеткам, называемым трахеидами. Соединяясь между собой концами, трахеиды образуют сосуды древесины. После растворения в них поперечных стенок они превращаются в длинные целлюлозные трубки, по которым и проходит вода. Ксилема проводит воду и растворенные в ней соли от корня к листьям, что представляет собой восходящий (транспирационный) ток.

Флоэма образуется так же, как и ксилема, но с той лишь разницей, что поперечные стенки не устраняются, а сохраняются. Однако в них образуются отверстия, обеспечивающие «проход» органических веществ от листьев к корням. Следовательно, флоэма обеспечивает нисходящий ток, т. е. движение органических веществ от листьев к корням.

§20 Эволюция клеток и тканей

Происхождение, специализация и объединение клеток в ткани есть категории исторические, ибо они возникли в ходе филогенеза. Однако объяснение этих категорий чрезвычайно затруднено, поскольку между клетками прокариотических и эукариотических организмов существуют важные различия. Тем не менее известно несколько гипотез.

На основании изучения ископаемых остатков бактерий и циано-бактерий предполагают, что предковой клеточной формой была примитивная прокариотическая клетка, возникшая около 3,5 х 109 лет назад. Клетки этого типа для обеспечения своего существования и размножения в начале использовали органические молекулы небиологического происхождения. Первым актом в формировании примитивных клеток было образование мембраны, окружавшей вещество клетки.

В последующем у примитивных прокариотических клеток стали развиваться механизмы синтеза и энергетического обеспечения. Предполагают, что первые прокариотические клетки обладали наиболее простыми каталитическими системами, в результате чего обеспечение их энергией основывалось на брожении. В последующем отдельные виды прокариотических клеток переключились с брожения на дыхание, что способствовало более эффективному получению энергии. Таким образом, эволюционные изменения прокариотических клеток шли по линии развития у них различных метаболических путей. Их геном развивался в направлении формирования «голых» молекул ДНК.

Эволюционные изменения эукариотических клеток шли в направлении увеличивающегося разнообразия в форме, размерах, структуре и функциях с одновременной компартментализацией биохимических систем и сохранением общего для всех Клеток аэробного метаболизма. Считают, что эукариотические клетки возникли менее 1 млрд лет назад из прокариотических клеток, причем для объяснения их происхождения выдвинуто три гипотезы.

В соответствии с одной их этих гипотез (гипотезой клеточного симбиоза), которая является наиболее распространенной, предполагают, что эукариотическая клетка является симбиотической структурой, состоящей из нескольких клеток разных типов, объединенных общей клеточной мембраной. В частности, предполагают, что пластиды клеток современных зеленых растений происходят от бактерий, бывших предками современных цианобактерий и способных к аэробному фотосинтезу, а митохондрии эукариотических клеток ведут начало от аэробных бактерий, которые вступали в симбиоз с примитивными анаэробными клетками, способными к фотосинтезу, что привело к образованию клеток, способных к существованию в атмосфере кислорода и использованию кислорода путем дыхания. Относительно ядра предполагают, что оно является рудиментом также какого-то древнего внутриклеточного симбионта, утратившего после включения в исходную клетку свою цитоплазму. В пользу этой гипотезы свидетельствуют данные о симбиотических взаимоотношениях некоторых современных организмов. Например, одноклеточная зеленая водоросль хлорелла (Chlorella) обитает в цитоплазме зеленой парамеции (Paramecium bussaria). Из-за способности к фотосинтезу она снабжает парамеции питательными веществами. Пластиды и митохондрии содержат собственную систему генетической информации о синтезе белков в виде ДНК, мРНК, рРНК, тРНК и соответствующих ферментов. Для хлоропластов, митохондрии и клеток-прокариот характерно сходство способов репродукции (все они одинаково репродуцируются путем простого деления надвое). Наконец, мутации митохон-дриальных генов назависимы от мутаций ядерных генов.

В соответствии с другой гипотезой считают, что эукариотичес-кая клетка произошла от прокариотической клетки, содержавшей несколько геномов, прикрепленных к клеточной мембране. В результате инвагинаций клеточной мембраны образовывались мезо-сомы, способные первоночально к фотосинтезу. Однако в дальнейшем произошла специализация этих органелл, в результате чего одна из них, утратив дыхательную и фотосинтетическую функцию, развилась в ядро, другие, наоборот, развив эти функции, стали митохондриями у животных и пластидами у растений. В пользу этой гипотезы свидетельствуют данные о двойном строении мембран ядра, митохондрии и пластид.

В соответствии с третьей гипотезой, основанной на мысли о том, что все живые формы произошли от предковых анаэробных ферментативных гетеротрофов, эукариоты представляют собой сублинию бесстеночных (анаэробных) прокариотов, которые развили способность к эндоцитозу. Посредством «заглатывания» других прокариотов, которые дали им дополнительные метаболические способности и которые, в конце концов, дегенерировали в органеллы, примитивная клетка (уркариот) стала эукариотической клеткой. Таким образом, прокариоты древнее, проще и примитивнее клеток-эукариот.

В соответствии с четвертой гипотезой предполагают, что эука-риотические клетки возникли из прокариотической клетки, содержавшей много геномов, которые распадались на части, давшие начало структурам с разными функциями. В последующем шло кло-нирование структур со сходными функциями, после чего они покрывались двойными мембранами, что привело к образованию ядра, митохондрии, а позднее и мембранной сети. В пользу этой гипотезы свидетельствуют данные о сходстве генетического кода, содержащегося в ядерной и митохондриальной ДНК, а также о сходстве в регуляции дыхательной функции ядром и митохондриями.

Как отмечено выше, симбиотическая гипотеза происхождения эукариотических клеток сейчас наиболее популярна. Однако, разделяя эту гипотезу, нельзя не отметить, что митохондрии и хло-ропласты вопреки их сходству с современными бактериями-аэробами и цианобактериями (соответственно) все же существенно отличаются от них. В частности, в митохондриях и хлоропластах намного меньше ДНК. Следовательно, здесь митохондрии и хлоропласты в ходе эволюции претерпели значительные изменения в направлении своих размеров.

Геном эукариотических клеток впоследствии развивался в направлении объединения молекул ДНК с белками и формирования хроматина и хромосом разной формы и в разном количестве. Специализация хроматина проявилась в формировании эухроматина и гетерохроматина, в формировании аутосом и половых хромосом. Что касается количества хромосом, то объяснить их эволюционную тенденцию пока трудно, поскольку многие примитивные организмы содержат в своих клетках большее число хромосом, чем организмы, занимающие высшие эволюционные ступени. Однако несомненно, что количественные и структурные изменения карио-типов в течение эволюции играли важную роль в видообразовании. Параллельно с этим происходило усложнение структуры и функции клеточных компонентов, развитие регуляторных механизмов.

Несомненно эволюционное значение митоза. Считают, что точность разделения и распределения хромосом в результате митоза является условием, обеспечивающим многоклеточность. Однако происхождение самого митоза не имеет достаточных объяснений. Предполагают лишь, что он развился из примитивного митоза, представляющего собой механизм, при котором расхождение реп-лицировавшихся хромосом происходило после вытягивания и разрыва веретена без разрушения ядерной мембраны (см. выше).

Объяснения эволюции тканей связаны со сложностями, которые обусловлены одинаковым строением тканей, принадлежащих живым организмам, находящимся на разных ступенях эволюционной лестницы. Например, мышечные волокна членистоногих, некоторых моллюсков и позвоночных имеют одинаковое строение. Между тем эти организмы филогенетически разделены очень большими «расстояниями». Аналогичная ситуация имеет место и при сравнении тканей растений из разных таксономических групп.

Начала тканеобразования в эволюционном плане уже прослеживаются у самых простых организмов. Например, у вольвокса отмечается формирование колоний, состоящих иногда более чем из 50 000 клеток, причем часть клеток уже специализирована. В частности, клетки, располагающиеся по краям колониальной формы, ответственны за образование новых колоний. У цианобактерий при нерасхождении разделившихся клеток образуются клеточные нити, в которых часть клеток специализирована на фиксации азота, чем обеспечиваются потребности в азоте и других клеток.

Идя вверх по эволюционной лестнице, можно видеть, что у губок уже отмечается около пяти специализированных типов клеток, специализация которых связана с выполнением разных функций в процессе фильтрации воды и поглощения отфильтрованных пищевых частиц.

У кишечнополостных тело состоит из двух слоев — эктодермы и энтодермы, представляющих собой наружный и внутренний эпителиальные слои. Наружные эпителиальные клетки являются стрекательными клетками, содержащими ядовитую жидкость, тогда как внутренние эпителиальные клетки секретируют пищеварительные ферменты и обеспечивают пищеварение. Поэтому предполагают, что первыми сформировались слои эпителиальных клеток и их роль в эволюции многоклеточных аналогизируется с ролью клеточных стенок и мембран одноклеточных организмов.

Значительный вклад в понимание эволюции тканей принадлежит А. А. Заварзину (1886-1945), который считал, что одни и те же факторы эволюции обеспечили не только разнообразие организмов, но и однообразие строения их тканей. Сходство в строении тканей у филогенетически далеко отстоящих животных А. А. За-варзин называл законом параллельных рядов тканевой эволюции. Работы А. А. Заварзина и его учеников заложили основы эволюционной гистологии.

Вопросы для обсуждения

1. Насколько велико значение методов исследования в изучении клеток? Какие из этих методов вы знаете?

2. Сформулируйте основные положения клеточной теории. Как Вы считаете, какова роль этой теории в биологии?

3. Почему клетку определяют в качестве элементарной единицы жизни и в чем заключаются доказательства того, что клетка действительно является элементарной единицей жизни? Что представляют собой межклеточные структуры?

4. Назовите два процесса, которые являются общими для всех живых систем.

б. Назовите принципиальные различия между клетками-прокариота-ми и клетками-эукариотами. Является ли одноклеточность признаком прокариот?

6. Назовите и охарактеризуйте компоненты мембранной системы клеток животных. Есть ли мембранная система в клетках растений?

7. Охарактеризуйте цитоплазматический матрикс и клеточные орга-неллы. Что собой представляет цитозоль? Есть ли у клеток скелет? Как организован цитоскелет и каковы его компоненты?

8. Каковы структура и роль клеточного ядра? Есть ли различия между ядрами клеток животных и клеток растений?

9. Каковы структура и функции митохондрий? Все ли клетки обладают митохондриями?

10. Сформулируйте определения клеточного цикла и митоза. С какой скоростью протекают митозы в клетках разных тканей?

11. Что собой представляют лизосомы и какова их роль? Что произойдет с клетками, если лизосомы подвергнутся разрушению?

12. Каково значение ферментов в жизни клеток? Все ли белки являются ферментами и в чем заключается их действие?

13. Каковы фазы митоза и сущность процессов, происходящих в эти фазы?

14. В какой фазе происходит разделение центромеры и освобождение сестринских хроматид?

15. Определите, какая весовая часть ядра приходится на хроматин клетки (примерно), допуская, что диаметр ядра составляет б мкм, а плотность 1,1 г/см"3 ?

16. Считая, что хромосомы человека состоят на 15% из ДНК, определите массу всех хромосом его диплоидных клеток.

17. Что вы можете сказать о происхождении митоза?

18. Что вы знаете об элементарном составе клеток?

19. Что понимают под биологическими молекулами?

20. Какой представляется вструктура белков и что вы знаете о функциях белков?

21. Как вы понимаете происхождение клеток-прокариот?

22. Как вы понимаете происхождение клеток-эукариот?

23. Каково ваше мнение относительно развития генома эукариотичес-ких клеток?

24. Каковы причины гибели клеток? Существует ли генетический механизм, контролирующий гибель клеток?

25. Что вы знаете об эпителиальных тканях и их функциях?

26. Назовите основные группы мышечной ткани и что составляет основу их классификации?

27. Каковы основные клеточные элементы собственно соединительных тканей?

28. Что такое нервная ткань и из каких компонентов она состоит?

29. Как вы представляете строение нервного волокна?

30. Почему кровь и лимфу считают тканями?

31. Какова функциональная роль лимфоцитов?

32. Как вы понимаете происхождение клеток-прокариотов и клеток-эукариотов?

33. Применима ли эволюционная теория к учению о тканях?

Литература

Альберте В., Брей Д., Льюис Дж„ Рэфф М., Роберте К., Уотсон Дж. Молекулярная биология клетки. М.: Мир. 1994. Т. 1. 615 стр.; 1994. Т. 2. 540 стр.

Вермель Е. М. История учения о клетке. М .: Наука . 1970. 259 стр .

Kaufman Р . В ., Wu W. Handbook of Molecular and Cellular Methods in Biology and Medicine. CRC Press L. 1995. 496 pp. Lackie J. M„ Dow 3. A. The Dictionary of Cell Biology. Academic Press . 1995. 380 pp .

Глава VII

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ

Обмен веществ и энергии (метаболизм) — это совокупность химических реакций, протекающих в клетках или в целостном организме и заключающихся в синтезе сложных молекул и новой протоплазмы (анаболизм) и в распаде молекул с освобождением энергии (катаболизм). Энергия необходима для биосинтеза (образования нового вещества), осмотической работы (поглощения и секреции клетками разных веществ), механической работы (при движении) и других реакций.

Обмен веществ и энергии — это важнейшее свойство живого, проявляющееся на разных уровнях организации живого. Благодаря обмену веществ и энергии происходят рост и размножение, формируются другие важнейшие свойства клеток и организмов. Характерная особенность метаболических функций животных и растительных клеток заключается в том, что они являются ферментативными и сходны между собой, поскольку клетки всех орга низмов обладают всеми молекулами, играющими центральную роль в метаболизме и обеспечивающими переход энергии одного вида в энергию другого вида. Кроме того в основе регуляции метаболических путей лежат общие механизмы. Благодаря этому энергетические процессы у всех живых существ сходны. Жизнь существует и продолжается лишь благодаря энергии (рис. 68).

§21 Анаболизм и катаболизм

Основными метаболическими процессами являются анаболизм (ассимиляция) и катаболизм (диссимиляция).

Анаболизм, или ассимиляция (от лат. assimilatio — уподобление), представляет собой эндотермический процесс уподобления поступающих в клетку веществ веществам самой клетки. Она является «созидательным» метаболизмом.

Важнейшим моментом ассимиляции является синтез белков и нуклеиновых кислот. Частным случаем анаболизма является фотосинтез, который представляет собой биологический процесс, при котором органическое вещество синтезируется из воды, двуокиси углерода и неорганических солей под влиянием лучистой энергии Солнца. Фотосинтез в зеленых растениях является автотрофным типом обмена.

Катаболизм, или диссимиляция (от лат. dissimilis — расподобление), является экзотермическим процессом, при котором происходит распад веществ с освобождением энергии. Этот распад происходит в результате переваривания и дыхания. Переваривание представляет собой процесс распада крупных молекул на более мелкие молекулы, тогда как дыхание является процессом окислительного катаболизма простых Сахаров, глицерина, жирных кислот и дезаминированных аминокислот, в результате которого происходит освобождение жизненно необходимой химической энергии. Эта энергия используется для пополнения запасов аденозинтри-фосфата (АТФ), который является непосредственным донором (источником) клеточной энергии, универсальной энергетической «валютой» в биологических системах. Пополнение запасов АТФ обеспечивается реакцией фосфата (Ф) с аденозиндифосфатом (АДФ), а именно:

АДФ + Ф + энергия ® АТФ

Когда АТФ разлагается на АДФ и фосфат, энергия клетки освобождается и используется для работы в клетке. АТФ представляет собой нуклеотид, состоящий из остатков аденина, рибозы и трифосфата (трифосфатных групп), тогда как аденозиндифосфат (АДФ) имеет лишь две фосфатные группы. Богатство АТФ энергией определяется тем, что его трифосфатный компонент содержит две фос-фоангидридные связи. Энергия АТФ превышает энергию АДФ на 7000 ккал/моль. Этой энергией обеспечиваются все биосинтетические реакции в клетке в результате гидролиза АТФ до АДФ и неорганического фосфата. Итак, цикл АТФ-АДФ является основным механизмом обмена энергии в живых системах.

К живым системам применимы два закона термодинамики.

В соответствии с первым законом термодинамики (законом сохранения энергии) энергия на протяжении химических и физических процессов не создается, не исчезает, а просто переходит из одной формы в другую, пригодную в той или иной мере для выполнения работы, т. е. использование энергии для выполнения какой-либо работы или переход энергии из одной формы в другую не сопровождается изменением (уменьшением или увеличением) общего количества энергии. Имея в виду глобальные категории, можно сказать, что вопреки любым физическим или химическим изменениям во Вселенной, количество энергии в ней останется неизменным.

В соответствии со вторым законом термодинамики физические и химические процессы протекают в направлении необратимого перехода полезной энергии в хаотическую, неупорядоченную форму и установления равновесия между упорядоченным состоянием и хаотическим, неупорядоченным. По мере приближения к установлению равновесия между упорядоченностью и неупорядоченностью и к остановке процесса происходит уменьшение свободной энергии, т.е. той порции общей (полезной) энергии, которая способна производить работу при постоянной температуре и постоянном давлении. Когда количество свободной энергии уменьшается, то повышается та часть общей внутренней энергии системы, которая является мерой степени случайности и неупорядоченности (дезорганизации) и называется энтропией. Другими словами, энтропия есть мера необратимого перехода полезной энергии в неупорядоченную форму. Таким образом, естественная тенденция любой системы направлена на повышение энтропии и уменьшение свободной энергии, которая является самой полезной термодинамической функцией. Живые организмы являются высокоупорядоченными системами. Для них характерно содержание очень большого количества информации, но они бедны энтропией.

Если Вселенная представляет собой реакционные системы, под которыми понимают совокупность веществ, благодаря которым протекают физические и химические процессы, с одной стороны, и окружающую среду, с которой реакционные системы обмениваются информацией, с другой стороны, то в соответствии со вторым законом термодинамики в ходе физических процессов или химических реакций энтропия Вселенной увеличивается. Метаболизм живых организмов не сопровождается возрастанием внутренней неупорядоченности, т. е. для живых организмов не характерны возрастные энтропии. В любых условиях все организмы, начиная от бактерий и заканчивая млекопитающими, сохраняют упорядоченный характер своего строения. Однако для самой энтропии характерно то, что она возрастает в окружающей среде, причем непрерывное возрастание энтропии в окружающей среде обеспечивается существующими в среде живыми организмами. Например, для извлечения свободной энергии анаэробные организмы используют глюкозу, которую они получают из окружающей среды и окисляют молекулярным кислородом, проникающим тоже из среды. При этом конечные продукты окислительного метаболизма (СО2 и H2 O) поступают в среду, что и сопровождается возрастанием энтропии среды, которое частично происходит из-за рассеивания тепла. Возрастание энтропии в этом случае повышается, кроме того за счет возрастания количества молекул после окисления (C6 H12 O6 + 6O2 ® 6СО2 + 6Н2 О), т. е. образование из 7 молекул 12 молекул. Как видно, молекулярная неупорядоченность ведет к энтропии.

Для живых существ первичным источником энергии является солнечная радиация, в частности видимый свет, который состоит из электромагнитных волн, встречающихся в виде дискретных единиц, называемых фотонами или квантами света. В живом мире одни живые существа способны улавливать световую энергию, другие получают энергию в результате окисления пищевых веществ.

Энергия видимого света улавливается зелеными растениями в процессе фотосинтеза, который осуществляется в хлоропластах их клеток. Благодаря фотосинтезу живые существа создают упорядоченность из неупорядоченности, а световая энергия превращается в химическую энергию, запасаемую в углеводах, являющихся продуктами фотосинтеза. Таким образом, фотосинтезирующие организмы извлекают свободную энергию из солнечного света. В результате этого клетки зеленых растении обладают высоким содержанием свободной энергии.

Получение энергии в результате окисления неорганических веществ происходит при хемосинтезе.

Животные организмы получают энергию, уже запасенную в углеводах, через пищу. Следовательно, они способствуют увеличению энтропии среды. В митохондриях клеток этих организмов энергия, запасенная в углеводах, переводится в форму свободной энергии, подходящей для синтеза молекул других веществ, а также для обеспечения механической, электрической и осмотической работы клеток. Освобождение энергии, запасенной в углеводах, осуществляется в результате дыхания — аэробного и анаэробного. При аэробном дыхании расщепление молекул, содержащих запасенную энергию, происходит путем гликолиза и в цикле Кребса. При анаэробном дыхании действует только гликолиз. Таким образом, жизнедеятельность клеток животных организмов обеспечивается в основном энергией, источником которой служат реакции окисления-восстановления «топлива» (глюкозы и жирных кислот), в процессе которых происходит перенос электронов от одного соединения (окисление) к другому (восстановление). С окислительно-восстановительными реакциями сопряжено фосфорилирование. Эти реакции протекают как при фотосинтезе, так и дыхании.

Организм — открытая саморегулирующая система, она поддерживает и реплицирует себя посредством использования энергии, заключенной в пище, либо генерируемой Солнцем. Непрерывно поглощая энергию и вещества, жизнь не «стремится» к равновесию между упорядоченностью и неупорядоченностью, между высокой молекулярной оранизацией и дезорганизацией. Напротив, для живых существ характерна упорядоченность как в их структуре и функциях, так и в превращении и использовании энергии. Таким образом, сохраняя внутреннюю упорядоченность, но получая свободную энергию с солнечным светом или пищей, живые оранизмы возвращают в среду эквивалентное количество энергии, но в менее полезной форме, в основном в виде тепла, которое, рассеиваясь, уходит во Вселенную.

Процессы обмена веществ и энергии подвержены регуляции, причем существует множество регулирующих механизмов. Главнейшим механизмом регуляции метаболизма является контроль количества ферментов. К числу регулирующих механизмов относят также контроль скорости расщепления субстрата ферментами, а также контроль каталитической активности ферментов. Метаболизм подвержен так называемому обратному аллостерическому контролю, заключающемуся в том, что во многих биосинтетических путях первая реакция может быть ингибирована (подавлена) конечным продуктом. Можно сказать, что такое ингибирование происходит по принципу обратной связи. В регуляции обмена веществ и энергии имеет значение и то, что метаболические пути синтеза и распада почти всегда разобщены, причем у эукариотов это разобщение усиливается компартментализацией клеток. Например, местом окисления жирных кислот в клетках являются митохондрии, тогда как их синтез происходит в цитозоле. Многие реакции метаболизма подвержены некоторой регуляции со стороны так называемого энергетического статуса клетки, показателем которого является энергетический заряд, определяемый суммой молярных фракций АТФ и АДФ. Энергетический заряд в клетке всегда постоянен. Синтез АТФ ингибируется высоким зарядом, тогда как использование АТФ стимулируется таким же зарядом.

§22 Поступление вещества в клетки

Благодаря содержанию растворов солей, Сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления. Например, давление в клетках животных (морских и океанических форм) достигает 30 атм и более. В клетках растений осмотическое давление является еще большим. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.

Поступление веществ в клетки животных, равно как и удаление их из клеток, связано с проницаемостью клеточной мембраны для молекул или ионов, а также со свойствами веществ. Клеточная мембрана регулирует обмен различными веществами между клеткой и средой. Поддержание мембраны и ее проницаемость обеспечиваются клеточной энергией.

Известно несколько путей поступления веществ в клетки. В частности, различают пассивный, катализируемый и активный транспорт веществ в клетки, а также проникновение веществ в клетки путем эндоцитоза в виде фагоцитоза и пиноцитоза. Пассивный, катализируемый и активный транспорт обеспечивают проникновение в клетки лишь малых молекул, тогда как эндоцитоз ответственен за поступление в клетки макромолекул (белков, по-линуклеотидов, полисахаридов) и разных твердых частиц, включая бактерии. В то же время клетки способны секретировать различные вещества в окружающую их среду. Этот процесс называют экзоцитозом.

Пассивный транспорт веществ в клетки обеспечивается диффузией через мембрану по градиенту концентрации. Молекулы обычно переходят из области высокой концентрации в область более низкой концентрации.

Количество работы, затрачиваемой на обеспечение транспорта молекул в клетку против градиента концентрации, можно определить, исходя из допущенияпростой реакции, в которой Ац есть концентрация молекул за пределами клетки, a Ai есть концентрация молекул внутри клетки. Эту реакцию можно описать константой равновесия в виде уравнения:

Между тем константа равновесия Кр связана со свободной энергией реакции отношением в виде G = RTInКр , где R есть около 2 кал/моль, а Т есть 25°С (температура, при которой протекают многие биологические реакции). Допуская, что совместная энергия гидролиза АТФ к АДФ обеспечивает эту реакцию с 50-процентной эффективностью, можно далее допустить, что транспортная система будет располагать примерно 3500 калориями (из общего количества энергии в 7000 калорий) на 1 моль АТФ, гидролизуемого при определенных физиологических условиях. Следовательно, константа равновесия будет равна:

Важнейший вывод их этих заключений состоит в том, что работа, необходимая для транспорта какой-либо молекулы, не зависит от абсолютных концентраций. Она зависит от отношений между концентрациями внутри и вне клетки.

Когда транспортируются незаряженные молекулы, то пассивный транспорт определяется только градиентом концентрации, т. е. разностью концентрации вещества на разных сторонах мембраны. Если же молекулы транспортируемого вещества заряжены, то к влиянию градиента концентрации добавляется влияние электичес-ких потенциалов по обе стороны мембраны. Градиент концентрации и электрический градиент в совокупности составляют электрохимический потенциал, который позволяет транспорт в клетку только положительно заряженных ионов.

Можно сказать, что пассивный транспорт веществ в клетки осуществляется обычной диффузией через клеточную мембрану, причем скорость диффузии вещества зависит от его растворимости в мембране, коэффициента диффузии в мембране и от разности концентрации веществ в клетке и за ее пределами (в среде). Этим путем в клетку проникают вода, двуокись углерода и молекулы органических веществ, способные хорошо растворяться в жирах. Вещества в клетку проникают через поры, имеющиеся в клеточной мембране. Пассивный транспорт не зависит от энергии, обеспечиваемой АТФ.

Известна катализируемая, или так называемая «облегченная» диффузия, при которой скорость диффузии разных веществ, например, Сахаров, аминокислот и нуклеозидов через мембрану повышается с помощью белков (ферментов). Как и обычная диффузия, «облегченная» диффузия тоже зависит от градиента концентрации, однако здесь имеются подвижные «переносчики», роль которых выполняют ферменты. Находясь в составе мембраны, ферменты действуют в качестве «переносчиков» молекул веществ, проникая (диффундируя) на противоположную сторону мембраны, где они освобождаются от переносимых веществ. Поскольку «облегченная» диффузия веществ является переносом по градиенту концентрации, она тоже непосредственно не зависит от энергии, обеспечиваемой АТФ.

Активный транспорт веществ в клетку отличается от пассивного (диффузии) тем, что вещество переносится против градиента концентрации, т. е. из области низкой концентрации в область более высокой концентрации. Активный транспорт связан со способностью мембраны поддерживать разность электрических потенциалов (помимо поддержания разности в концентрациях веществ внутри и снаружи клетки), под которыми понимают различия между электрическими потенциалами внутри и вне клетки, а также с затратами энергии на работу в виде перемещения веществ против электрохимического градиента, т. е. «вверх».

Энергия для транспорта обеспечивается фосфоэнолпируватом, фосфатная группа которого и часть химической энергии которого передаются белкам, часть которых используется всеми сахарами, транспортируемыми фосфотрансферазной системой, а часть специфична для отдельных Сахаров. Конечный белок содержится в мембране и ответственен за транспорт и фосфорилирование Сахаров.

Активный транспорт особенно эффективен в случае переноса ионов. Реакции, обеспечивающие активный транспорт, происходят в мембране и сопряжены с реакциями, дающими свободную энергию. Ферменты, катализирующие эти реакции, также локализованы в мембране. Примером активного транспорта веществ является транспорт ионов натрия и калия (рис. 69), который определяет клеточный мембранный потенциал. Концентрация ионов натрия (Na+ ) внутри большинства клеток является меньшей, чем в среде, тогда как концентрация ионов калия (К+ ) внутри клеток является в 10—20 раз большей, чем в среде. В результате этого ионы Nа+ стремятся проникнуть из среды в клетку, а ионы К+ , наоборот, выйти из клетки в среду. Поддержание концентрации этих ионов в клетке и в окружающей среде обеспечивается благодаря наличию в клеточной мембране системы, которая является ионным «насосом» и которая откачивает ионы Na+ из клетки в среду и накачивает ионы К+ в клетку из среды. Работа этой системы, т.е. движение ионов против электрохимического градиента, обеспечивается энергией, которая генерируется гидролизом АТФ, причем фермент АТФ-аза, катализирующий эту реакцию, содержится в самой мембране и, как считают, выполняет роль натриево-калиевого «насоса», генерирующего мембранный потенциал. Энергия, освобождаемая при гидролизе одной молекулы АТФ, обеспечивает транспорт за пределы клетки трех ионов Na+ и внутрь клетки двух ионов К+ .

Система Na+ + К+ —АТФ-аза помогает поддерживать ассиметрическое распределение ионов калия при высокой концентрации последнего в клетках. Ионы калия участвуют в регуляции многих клеточных функций, включая поток солей и воды из почечных клеток, освобождение инсулина из панкреатических клеток, частоту сердцебиений.

Установлено, что энергетически выгодный транспорт ионов Na+ внутрь клеток оказывает также влияние на транспорт сахаров и аминокислот в клетки. В частности, с транспортом ионов Na+ сопряжен транспорт глюкозы. Чтобы создать градиент концентрации ионов Na+ , благоприятный для транспорта ионов К+ и глюкозы внутрь клеток, ионная «насосная» система благодаря энергии активно откачивает ионы Na+ из клетки за ее пределы.

Определенная роль в транспорте веществ принадлежит белоксвязывающим системам, представляющим четвертый способ транспорта. Речь идет о белках, локализованных в периплазматическом пространстве. Эти белки специфически связывают сахара, аминокислоты и ионы, перенося их затем к специфическим молекулам-носителям, локализованным в клеточной мембране. Источником энергии для этих систем является АТФ.

Эндоцитоз , как отмечено выше, обеспечивает перенос в клетки крупных частиц и молекул. В рамках эндоцитоза различают фагоцитоз и пиноцитоз.

Фагоцитоз (от греч. phagos — пожирающий и cytos — клетка) представляет собой процесс, заключающийся в том, что клетки-лейкоциты (макрофаги и нейтрофилы) захватывают (обволакивают) твердые частицы (фрагменты клеток, бактерии) путем выпячиваний своей клеточной мембраны и образования пузырьков, сливающихся затем с плазматической мембраной и открывающихся внутрь клетки. Вошедшие внутрь клеток частицы поступают в лизосомы, где с помощью клеточных (лизосомных) ферментов разрушаются и усваиваются затем клетками. Фагоцитоз широко распространен среди одноклеточных организмов. У многоклеточных (млекопитающих) он выполняется специализированными клетками (лейкоцитами).

У простейших фагоцитоз является формой питания, в результате которого твердые частицы проникают в лизосомы, где и перевариваются, образуя продукты, служащие пищей. Биологическое значение фагоцитоза у млекопитающих заключается в том, что он обеспечивает иммунную (фагоцитарную) защиту организма (см. гл. XVII).

Пиноцитоз (от греч. pino — пить и cytos — клетка) представляет собой процесс, при котором клетки поглощают жидкости и находящиеся в них высокомолекулярные вещества путем впячива-ний плазматической мембраны и образования пузырьков (каналь-цев), куда поступает жидкость. Канальцы после заполнения жидкостью отшнуровываются, поступают в цитоплазму и доходят до лизосом, где их стенки перевариваются, в результате чего содержимое (жидкость) канальцев освобождается и подвергается дальнейшей обработке лизосомными ферментами.

Пиноцитоз часто встречается у одноклеточных животных, у многоклеточных он наблюдается в клетках кровеносной и лимфатической систем, в клетках злокачественных опухолей, а также в клетках тканей, для которых характерен повышенный уровень обмена веществ.

Экзоцитоз — это процесс секретирования клетками различных веществ, причем известны регулируемый и конститутивный пути экзоцитоза. Примером регулируемого экзоцитоза является экзоци-тоз инсулина. Клетки поджелудочной железы, продуцирующие инсулин, упаковывают его вначале в так называемые секреторные пузырьки, которые после внеклеточного сигнала сливаются с плазматической мембраной, а затем открываются в межклеточное пространство, освобождая гормон. Подобным образом происходит эк-зоцитоз других гормонов, нейротрансмиттеров и многих ферментов. Напротив, конститутивный путь экзоцитоза присущ многим белкам, непрерывно синтезируемым клетками и упаковываемым в эк-зоцитозные пузырьки в комплексе Гольджи, после чего эти пузырьки перемещаются к плазматической мембране, где и открываются в межклеточное пространство, освобождаясь от белкового содержимого.

С помощью экзоцитоза из клетки удаляются также частицы, оказавшиеся непереваренными путем фагоцитоза. У большинства клеток циклы эндоцитоз-экзоцитоз непрерывны.

§ 23 Фотосинтез. Хемосинтез.

Фотосинтез — это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах. Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе (рис. 70). Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существовария всего живого. Следовательно, роль фотосинтеза является планетарной.

Планетарность фотосинтеза определяется также тем, что благодаря круговороту кислорода и углерода (в основном) поддерживается современный состав атмосферы, что в свою очередь определяет дальнейшее поддержание жизни на Земле. Можно сказать далее, что энергия, которая запасается в продуктах фотосинтеза, есть по существу основной источник энергии, которым сейчас располагает человечество.

Химию фотосинтеза описывают следующими уравнениями:

Как отмечено выше, фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений. Когда свет падает на молекулу хлорофилла, то один из ее электронов оказывается в возбужденном состоянии. Другими словами, он переходит на более высокий энергетический уровень. Возбужденные электроны передаются затем другими молекулами, в результате чего повышается свободная энергия молекулы-акцептора, а «брешь», образованная в молекуле хлорофилла, заполняется электроном, поступающим из воды. Последняя при этом окисляется, в результате чего выделяется молекулярный кислород. Таким образом, в молекулах хлорофилла световая энергия переводит электроны на более высокий энергетический уровень. Хлорофилл является промежуточным соединением на пути электронов от низкоэнергетического уровня в молекулах воды к высокоэнергетическому уровню в конечном акцепторе электронов.

В переходе электронов на высокий энергетический уровень участвуют две содержащиеся в хлоропластах фотосистемы, образованные хлорофиллом и особыми белками — фотосистема I, активируемая далеким красным светом (-700 нм) и фотосистема II, активируемая красным светом с более высокой энергией (-650 нм), т. е. этот переход происходит в два этапа при использовании света. Реакции, протекающие на этих этапах, получили название световых. Обе фотосистемы связаны между собой системой переноса электронов.

На уровне фотосистемы I молекулы хлорофилла передают свои электроны, богатые энергией, через ферредоксин к никотин-ами-даденин-динуклеотидфосфату (НАДФ), который в результате этого восстанавливается в НАДФЧН ив восстановленной форме уже сам способен самостоятельно поставлять электроны, необходимые для образования глюкозы путем восстановления атмосферной СОу После перехода электронов в НАДФЧН из молекулы хлорофилла в последних остаются своеобразные «бреши».

На уровне фотосистемы II богатые энергией возбужденные электроны хлорофилла передаются системе переноса электронов, а образовавшиеся в молекулах хлорофилла «бреши» после «ушедших» электронов замещаются бедными энергией электронами, которые поступают от воды, окисляющейся с образованием молекулярного кислорода. Пройдя через ряд соединений, составляющих цепь переноса электронов, электроны из фотосистемы II, богатые энергией, в конечном итоге замещают утраченные электроны в хлорофилле из фотосистемы I.

В цепи переноса электронов осуществляется несколько окислительно-восстановительных реакций, в каждой из которых электроны переходят на более низкий энергетический уровень.

Часть энергии, теряемой при переходе через цепь переноса электронов, идет на обеспечение синтеза АТФ из АДФ и неорганического фосфата. Считают, что синтез молекул АТФ связан также с фотосистемой I, в которой имеется циклический поток электронов, заключающийся в том, что электроны, захваченные акцептором, возвращаются хлорофиллу через цитохром В. При этом энергия, высвобождающаяся в реакциях систем переноса электронов, в которых электроны двигаются «вниз», запасается путем синтеза молекул АТФ.

В результате световых реакций фотосинтеза образуются высокоэнергетические АТФ и восстановленный НАДФ, которые снабжают энергией последующие, так называемые темновые реакции, протекающие без света и приводящие, в конце концов, к восстановлению атмосфертной COg до Сахаров. Источником энергии здесь является АТФ, а восстанавливающим агентом — НАДФ-Н, синтезируемые в реакциях фотосинтетического переноса электронов. Процесс восстановления COg начинается с катализируемой ри-булозобисфосфаткарбоксилазой фиксации молекул этого соединения молекулами акцептора и сопровождается вступлением атомов углерода в ряд последовательных реакций, что приводит к образованию на каждые шесть фиксированных молекул COg одной молекулы глюкозы, причем связывание одной молекулы COg обеспечивается затратой трех молекул АТФ и двух молекул НАДФ-Н.

Как отмечено выше, энергия и электроны, необходимые для темновых реакций, поставляются АТФ и восстановленным НАДФ, образованными в световых реакциях.

Таким образом, химическая энергия, генерированная световыми реакциями, стабилизируется в молекулах глюкозы в процессе темновых реакций. В конечном итоге из глюкозы образуется крахмал, который является ее высокомолекулярным полимером, в котором оказываются запасенными по существу как атомы углерода, так и энергия. Полимеризуясь, глюкоза образует также целлюлозу. Подсчитано, что в листьях зеленых растений Земли и в фитопланктоне водоемов ежегодно синтезируется около 150 млрд тонн органических веществ и выделяется в атомсферу около 200 млрд тонн кислорода.

Фотосинтез имеет большую древность. Предполагают, что круговорот углерода, т. е. фотосинтез, существовал уже 3,5 х 109 лет назад.

Хемосинтез — это синтез органических веществ с помощью энергии, генерируемой окислением неорганических соединений, например, аммиака, оксида железа, сероводорода. Хемосинтез был открыт С. Н. Виноградским в 1889-1890 гг. Его осуществляют бактерии разных видов. Рассмотрим некоторые из наиболее известных примеров, начав с нитрифицирующих бактерий, роль которых была показана С. Н. Виноградским.

Нитрифицирующие бактерии являются обитателями почвы. Они получают энергию окислением аммиака, образующегося в почве в результате разложения белков (остатков животных и растений). Реакция окисления аммиака может быть описана следующим уравнением:

В этой реакции выделяется энергия в количестве бй2 кДж. Образующаяся в ходе этой реакции азотистая кислота окисляется нитрифицирующими бактериями другого вида до азотной кислоты с выделением энергии в количестве 101 кДж. Эта реакция описывается следующим уравнением:

Энергия, освобождаемая в этих реакциях, используется для синтеза органических веществ.

Серобактерии получают энергию, окисляя сероводород. Этот процесс можно описать следующим уравнением:

энергия

Образующаяся в результате этой реакции свободная сера накапливается в цитоплазме серобактерий. Если недостает далее сероводорода, то происходит окисление свободной серы в бактериальной цитоплазме с дальнейшим освобождением энергии:

энергия

Эта энергия используется для синтеза органических веществ из углекислого газа.

Хемосинтезирующие бактерии окисляют также соединения железа и марганца. Считают, что образование залежей железных и марганцевых руд является результатом деятельности микроорганизмов в прошлые геологические эпохи (В. И. Вернадский).

§ 24 Подготовка энергии к использованию

(дыхание)

У растений источником энергии является солнечный свет, причем ответственными за производство АТФ являются хлоропласты. Энергия, которая оказывается запасенной в основном в углеводах, используется в дальнейшем клетками растений для обеспечения различных биологических реакций. Что же касается клеток животных, то энергия поступает к ним с пищей (сахарами и жирными кислотами). Чтобы эта энергия могла использоваться в процессе жизнедеятельности клеток, она должна быть подготовлена для использования. Каковы же механизмы, с помощью которых энергия, запасенная в глюкозе, трансформируется в клетках в доступную для использования форму АТФ?

Подготовка энергии к использованию, т. е. генерирование (извлечение) энергии из пищевых веществ осуществляется в процессе дыхания, под которым понимают окисление (расщепление) молекул-энергоносителей, т. е. «топливных» молекул, при котором роль конечного акцептора электронов выполняет О у а донором электронов является органическое или неорганическое соединение. Процесс подготовки энергии к использованию протекает в три последовательные стадии (рис. 71).

На первой стадии поступающие в клетки крупные молекулы полисахаридов гидролизуются до простых Сахаров. На этой стадии происходит разложение и других энергоносителей. В частности, жиры разлагаются на глицерол и жирные кислоты, белки гидро-лизуются до аминокислот. Однако на этой стадии высвобождение запасенной в пищевых веществах энергии все еще не происходит.

На второй стадии происходит распад малых молекул до еще более простых структур, играющих уже ключевую роль в метаболизме. Глюкоза превращается в ацетильную часть ацетил-КоА, являющегося производным кофермента А. В результате этих реакций образуются молекулы АТФ, но их еще мало. На уровне ацетил-КоА в метаболический путь могут вступать также жирные кислоты и аминокислоты.

Наконец, на третьей стадии происходит полное окисление ацетильного компонента ацетил-КоА до СОу На этой стадии образуется основная часть АТФ.

Процесс генерирования энергии в животных клетках (извлечения ее из субстрата) осуществляется с участием митохондрий и начинается с гликолиза (от греч. glycos — сахар и lysis — растворение), который представляет собой окисление глюкозы, заканчивающееся превращением этого углевода в пировиноградную кислоту и образованием АТФ. Уже давно установлено, что для дыхания в качестве акцептора электронов необходим кислород. Однако на первых этапах расщепления Сахаров кислорода не требуется. Окисление глюкозы начинается в анаэробных условиях дыхания (при отсутствии кислорода) с частичного расщепления ее шестиуглеродной молекулы и заканчивается образованием двух трехуглеродных молекул пировиноградной кислоты (рис. 72). Превращения глюкозы можно описать следующим уравнением:

C 6 H12 O6 + 2Ф + 2АДФ ® 2СН3 СНОНСООН + 2АТФ + 2Н2 О

У большинства организмов гликолиз служит одним из центральных метаболических путей и состоит из десяти последовательных химических реакций, протекающих в цитоплазме (цитозол). Вначале глюкоза превращается через глюкозо-6-фосфат во фрукто-зо-1,6-дифосфат в результате фосфорилирования, катализируемого гексокиназой и фосфофруктозокиназой. Поскольку эти реакции еще сами нуждаются в АТФ, они являются подготовительными в образовании АТФ. В частности, на превращение каждой молекулы глюкозы в этих реакциях затрачивается по две молекулы АТФ.

На втором этапе фруктозо-1,6-дифосфат превращается с помощью альдолазы в дигидроксиацетонфосфат и глицераль-дегид-3-фосфат, которые взаимопревращаемы в реакциях, катализируемых триозофосфатизомеразой. Затем глицеральдегид-3-фосфат окисляется и фосфорилизуется, в результате чего превращается в высокоэнергетическое фосфатное соединение 1,3-дифосфоглицерат (1,3-БФГ). Это превращение катализируется глицеральдегид-3-фосфатдегидрогеназой.

Поскольку 1,3-БФГ-ацилфосфат обладает высоким потенциалом переноса фосфатной группы, эта особенность используется для генерирования АТФ. Поэтому дальше происходит перенос фосфатной группы от ацилфосфатной группы 1,3-БФГ-ацилфосфата на АДФ, катализируемый фосфоглицераткиназой. В результате этого образуется молекула АТФ и 3-фосфоглицерат, т. е. на этом этапе происходит образование энергии.

Последний этап гликолиза связан с превращением 3-фосфоглицерата в пируват и образованием второй молекулы АТФ. Этот этап осуществляется в реакциях трех типов. Первая реакция заключается во внутримолекулярной перестройке, связанной с превращением 3-фосфоглицера-та в 2-фосфоглицерат, катализируемым фосфоглицеромутазой.

В результате этой реакции происходит перемещение фосфатной группы. Во второй реакции происходит дегидратация 2-фосфоглицерата, катализируемая енолазой, в результате чего образуется фосфоенолпируват. При этом повышается потенциал переноса фосфатной группы енолфосфат обладает высоким потенциалом переноса фосфатной группы. В третьей (заключительной) реакции этого этапа гликолиза происходит перенос фосфатной группы, от фосфоенолпирувата к АДФ, катализируемый пируваткиназой. Это приводит к образованию пирувата и АТФ (второй молекулы).

При анаэробных условиях пировиноградная кислота превращается в молочную кислоту (лактат) или в этиловый спирт (этанол), или в пропионовую кислоту. Этот анаэробный процесс называют еще брожением. В данном случае речь идет о молочнокислом, спиртовом и пропионовом брожении (соответственно). Молочная кислота образуется из пирувата при метаболизме ряда микроорганизмов, а также в клетках мышц многоклеточных организмов. Суммарная реакция превращения глюкозы в лактат имеет следующий вид:

НАД×Н образуется в результате окисления глицеральдегид-3-фосфата, который используется при восстановлении пирувата.

В процессе превращения пировиноградной кислоты в лактат происходит регенерирование НАД+ , что поддерживает непрерывность гликолиза в анаэробных условиях. Этиловый спирт образуется из пирувата при метаболизме дрожжей и некоторых других микроорганизмов спиртового брожения. Суммарная реакция превращения глюкозы в этанол имеет следующий вид:

Глюкоза + 2Pi + 2АДФ + 2Н+ ® 2 этанол + 2СО2 + 2АТФ + 2Н2 0.

Восстановление ацетальдегида в этиловый спирт сопровождается регенерированием НАД+ .

Анаэробное дыхание с точки зрения производительности не является эффективным процессом, т. к. при анаэробном превращении глюкозы в этанол или лактат освобождается лишь небольшое количество энергии. Большая часть энергии, запасенная в глюкозе, продолжает затем оставаться запасенной уже в молекулах этанола.

Как видно, последовательность реакций, в процессе которых глюкоза превращается в пируват, сходна в клетках всех видов у всех организмов. Биологическое значение гликолиза заключается в том, что он генерирует молекулы АТФ. В результате распада глюкозы образуются строительные блоки, используемые для синтеза клеточных структур. Оба эти процесса регулируются скоростью превращения глюкозы в пируват. Однако роль пирувата в генерировании энергии обмена веществ различна в разных клетках и разных организмах.

У аэробных организмов гликолиз, осуществляемый в цитозоле выполняет роль своего рода процесса-прелюдии к дальнейшему окислению, ибо при аэробном дыхании (в присутствии кислорода) окисление идет дальше и осуществляется уже в митохондриях в так называемом цикле Кребса (цикле трикарбоновых кислот или цикле лимонной кислоты) и в цепи переноса электронов, цикл Кребса является конечным путем окисления топливных молекул, причем не только глюкозы и других углеводов, но и жирных кислот и аминокислот (рис. 73). Следовательно, «топливом» для окисления в митохондриях являются пируват и жирные кислоты. Включение в этот окислительный путь осуществляется на уровне кофермента (ацетил-КоА), т. е. происходит с образования ацетил-КоА в митохондриаль-ном матриксе, в результате окислительного декарбоксилирования пирувата или распада жирных кислот до двухуглеродных групп. Ацетил-КоА обладает высоким потенциалом переноса ацетильных групп. Следовательно, топливные молекулы вступают в цикл Кребса в виде ацетил-КоА. Непрерывность же снабжения окислительных процессов «топливом» обеспечивается запасанием животными клетками липидов, являющихся главным ресурсом жирных кислот, а также гликогена, являющегося источником глюкозы.

Цикл Кребса действует только в аэробных условиях и начинается с конденсации ацетил-КоА (C2 ) и оксалоацетата (C4 с образованием цитрата (С6 ), изомеризация которого приводит к изоцитрату (C6 ). Затем следует окислительное декарбоксилирование изоцитрата и образование a-оксоглутарата (С5 ), после чего последний подвергается окислительному декарбоксилированию (выделяется вторая молекула CO2 в сукцинил-КоА (С4 ). В следующей реакции происходит расщепление тиоэфирной связи сукцинил-КоА в присутствии пирофосфата (Pi), в результате чего образуется сукцинат и генерируется высокоэнергетические фосфатные связи в форме ГТФ и АТФ.

Сукцинат потом окисляется в фумарат (С4 ), а последний гидратируется в малат. В последующей реакции происходит окисление малата, что приводит к регенерированию оксалоацетата (C4 ). Следовательно, в цикл Кребса вступают два атома углерода в виде ацетил-КоА и такое же количество атомов углерода покидают этот цикл уже в виде CO2 в последовательных реакциях декарбоксилирования, которые катализируются дегидрогеназами.



В результате четырех окислительно-восстановительных реакций цикла Кребса происходит перенос трех пар электронов над НАД и одной пары электронов на ФАД. Восстановленные этим путем переносчики электронов НАД и ФАД подвергаются затем окислению уже в цепи переноса электронов, в результате которого генерируется одиннадцать молекул АТФ. Одна высокоэнергетическая связь генерируется непосредственно в цикле Кребса. Таким образом, на каждый двухуглеродный фрагмент, полностью окисляемый до Н2 О и СО2 , генерируется двенадцать высокоэнергетических фосфатных связей.

Цикл Кребса подвержен регуляции; его скорость зависит от потребности в АТФ других метаболических реакций. Важное значение имеет регуляция синтеза цитратсинтазы, изоцитратдегидроге-назы и оксоглутаратдегидрогеназы.

Биологическое значение цикла Кребса заключается не только в том, что он является завершающим этапом в генерировании энергии, но и в том, что он «поставляет» промежуточные продукты для биосинтеза.

Цикл Кребса действует только в аэробных условиях по той причине, что для него необходимы НАД и ФАД, регенерирование которых происходит при переносе электронов НАД×Н и ФАД×H2 на О2 по цепи транспорта электронов, сопровождаемом одновременным образованием АТФ (рис. 74).

Поскольку у аэробных организмов единственным акцептором электронов является О2 , а электроны не переносятся от топливных молекул и продуктов их реакций прямо на O2 , топливные молекулы и продукты их распада переносят электроны к пиримидиннуклеотидам или флавинам, являющимся переносчиками.

Главным акцептором электронов при окислении топливных молекул является никотинамидадениндинуклеотид (НАД+ , реакционноспособной частью которого является никотинамидное кольцо. Последнее присоединяет ион водорода и два электрона. Восстановленной формой этого переносчика является НАД×Н. Окисление последнего дает три молекулы АТФ. Вторым акцептором электронов является ФАД (флавинадениндинуклеотид), ре-акционноспособной частью которого является изоаллоксазиновое кольцо, которое тоже присоединяет два электрона. Восстановленной формой ФАД является ФАД×H2 . Окисление последнего дает две молекулы АТФ.

Таким образом, главными переносчиками являются НАД×Н и ФАД-Hg, которые содержат по паре электронов с высоким потенциалом и которые доставляют свои высокоэнергетические электроны к О3 по цепи транспорта электронов, также локализованной в митохондриях.

Этот перенос сопровождается образованием АТФ из АДФ и пи-рофосфата (Рi), происходит на митохондриальных мембранах и носит название окислительного фосфорилирования. Оно было открыто в 1931 г. В. А. Энгельгардтом (1894-1984). Следовательно, окислительное фосфорилирование — это процесс образования АТФ, сопряженного с переносом электронов по цепи транспорта (переносчиков) от НАД×Н или ФАД×H2 к O2 через многие другие переносчики, в частности питохромы. В процессе окислительного фосфорилирования генерируется 32 молекулы АТФ из всех 36 молекул АТФ, генерируемых в процессе окисления глюкозы до СО2 и Н2 О.

Многоступенчатость транспорта электронов от НАД×Н или ФАД×Н2 к О2 по цепи многочисленных переносчиков сопровождается выбросом протонов из митохондриального матрикса и генерированием на внутренней митохондриальной мембране протон-движущей силы (мембранного потенциала), измеряемой в милливольтах. На внутренней поверхности митохондриальной мембраны протондвижущая сила равна 220 микровольтам.

В процессе обратного перехода протонов в митохондриальный матрикс происходит синтез АТФ.

Следовательно, окисление НАД×Н и ФАД×H2 и фосфорилирование АДФ в АТФ сопряжены по той причине, что они обеспечиваются протонным градиентом через внутреннюю мембрану митохондрий. Это сопряжение называют дыхательным контролем.

Потенциальные возможности окисления в митохондриях очень большие, т. к. последние обеспечивают производство почти всего АТФ в клетках млекопитающих.

§25 Использование энергии в клетках

Благодаря фотосинтезу и дыханию световая энергия Солнца конвертируется в форму, которая может использоваться клетками для обеспечения всех выполняемых ими функций (рис. 75).

Основными видами биологической работы в клетках являются транспорт веществ через мембраны, биологический синтез и механическая работа. Обеспечение этих видов биологической работы в клетках основано на цикле АТФ-АДФ. Для обеспечения энерготребующих функций клеток используются высокоэнергетические связи АТФ. В результате реакции в конечном итоге освобождается неорганический фосфат. АДФ рефосфорилируется в АТФ в процессе реакций катаболизма.

Большое место в катаболизме занимает биосинтез различных соединений, который в клетках происходит непрерывно. Больше того, клетки обладают гигантской биосинтетической способностью в отношении всех веществ. Например, одиночная клетка Е. coli способна за время от одного деления до другого (в процессе одного клеточного цикла) синтезировать огромное количество молекул различных соединений (табл. 7).

Таблица 7

Биосинтетическая способность Е. coli

Химическое соединение

Сухой вес,(в%)

Молекулярная масса

Количество молекул на клетку

Количество молекул, синтезируемых за 1 сек

Количество молекул АТФ, необходимых для синтеза в течение секунды

Количество требуемой энергии (в %) к общей затрачиваемой энергии

ДНК

5

2000000000

1

0,00083

60000

2,5

РНК

10

1000000

15

12,5

75000

3,1

Белки

70

60000

1700000

1,400

2120000

88

Липиды

10

1000

15000000

12500

87500

3,7

Полиса-хариды

5

200000

39000

32,5

65000

2,7

Центральное место в биосинтезе принадлежит синтезу белков (см. гл. XII). Синтез белков, нуклеиновых кислот и других химических соединений необходим для поддержания живых клеток. Во все биосинтезы вовлечен АТФ.

Больше того, между биосинтезом и деградацией химических соединений наблюдается взаимодействие, причем это взаимодействие обеспечивается АТФ (рис. 76).

Одним из обычных примеров механической работы является мышечное сокращение, в котором существенную роль играет АТФ.

§26 Метаболизм на уровне организмов

По характеру ассимиляции различают автотрофные, гетеротрофные и миксотрофные организмы.

Автотрофные (от греч. autos — сам, trophe — пища), или самопитающиеся организмы, — это организмы, способные синтезировать органические соединения из неорганических (углекислого газа, воды и неорганических соединений азота и серы). В зависимости от источника потребляемой энергии автотрофы классифицируют на фотосинтезирующие и хемосинтезирующие организмы.

Первые используют световую энергию, тогда как вторые — энергию экзотермических химических реакций (в ходе превращения неорганических соединении), т. е. энергию, образующуюся при окислении различных неорганических соединений (водорода, сероводорода, аммиака и др.).

Фотосинтезирующими организмами являются растения, в листьях которых осуществляется фотосинтез.

Зеленые растения образуют углеводы, которые передвигаются из листьев в корни, где вступают в реакции с аммиаком и образуют аминокислоты.

Хемосинтезирующими организмами являются микроорганизмы — нитрифицирующие, серобактерии, водородные бактерии и железобактерии. Свободный азот усваивают азотфиксирующие бактерии.

Гетеротрофные (от греч. heteros — другой, trophe — пища) организмы — это организмы, которые нуждаются в готовых органических соединениях. Ими являются животные, а также микроорганизмы. Гетеротрофные организмы получают энергию путем окисления органических соединений (см. § 24).

Для животных характерен голозойный способ гетеротрофного питания, заключающийся в потреблении пищи в виде твердых частиц с последующей ее механической и химической переработкой.

Напротив, для микроорганизмов характерен осмотическим способ гетеротрофного питания. При этом способе питание происходит растворенными питательными веществами путем поглощения их всей поверхностью тела.

Миксотрофные (от лат. mixtus — смешанный) организмы — это организмы, способные как к синтезу органических веществ, так и к использованию их в готовом виде.

Например, эвглена зеленая на свету является автотрофом, в темноте — гетеротрофом.

По характеру диссимиляции различают аэробные и анаэробные организмы. Аэробные (от греч. aer — воздух) организмы для дыхания (окисления) используют свободный кислород. Аэробами является большинство ныне живущих организмов. Напротив, анаэробы окисляют субстраты, например, сахара в отсутствие кислорода, следовательно, для них дыханием является брожение. Анаэробами являются многие микроорганизмы, гельминты. Например, динитри-фицирующие анаэробные бактерии окисляют органические соединения, используя нитриты, являющиеся неорганическим окислителем.

Автотрофы и гетеротрофы связаны между собой питанием (пищевыми цепями) и энергетически, в результате чего существование одних из них зависит от других и наоборот.

Например, кислородные потребности аэробоз полностью зависят от автотрофов (зеленых растений). Последние используют СОу поставляемый в окружающую среду гетеротрофами. Все живые существа обладают системами, обеспечивающими превращение энергии и способны понижать энтропию.

Жизнедеятельность организмов с различными типами питания создает круговороты веществ в природе (см. гл. XVIII).

§27 Происхождение типов обмена

Обсуждение вопросов, касающихся происхождения типов обмена, очень осложнено незнанием первых этапов в развитии жизни. Поэтому формулируемые гипотезы не доступны экспериментальной проверке. Тем не менее предполагают, что когда возникла жизнь и когда ресурсы «первичного бульона» были исчерпаны, то у первых клеток возникла необходимость синтезировать ферменты, катализирующие образование органических молекул. Следовательно, селективные преимущества далее приобрели клетки, способные к биосинтезу. Со временем у клеток возникли различные метаболические пути. Предполагают, что центральным был метаболизм в виде гликолиза, ведущего к синтезу АТФ.

Считают, что первыми организмами, сходными, вероятно, с бактериями, были гетеротрофные анаэробы, способные использовать органические вещества абиогенного происхождения. Формирование цепи транспорта электронов позволило анаэробным бактериям использовать в качестве источника энергии те органические соединения, которые не подвергаются сбраживанию. Первые ге-теротрофы дали начало автотрофам, которые тоже были анаэробами. Позднее среди автотрофов появились организмы, способные осуществлять фотосинтез, что повело около 3,5—2 млрд лет назад к превращению СО2 в органическое соединение и к накоплению в атмосфере кислорода.

Предполагают, что первой стадией в возникновении фотосинтеза у примитивных организмов явился простейший синтез АТФ. Более поздние организмы возможно использовали водород для синтеза углеводов, после чего появились организмы, которые оказались способными использовать воду в качестве источника водорода и продуцировать кислород, т. е. уже быть фотосинтезирующими. Предполагают, что первые автотрофы использовали ферментные системы, развитые гетеротрофами. Поэтому на фотосинтез следует смотреть как на процесс, усложнявшийся в ходе исторического развития. В конечном итоге фотосинтезирующие организмы заселили все водоемы, а потом и сушу. Углеводы являются начальным продуктом фотосинтеза и сырым материалом для всех других структур, синтезируемых в растениях.

Оценивая значение фотосинтеза, можно заключить, что его эволюция привела к двум очень важным результатам. Первый результат заключается в том, что благодаря фотосинтезу возникло огромное количество видов организмов, которые оказались независимыми от пищи (корма) органического происхождения. Это создало условие для их процветания. Что же касается второго результата, то он заключается в том, что благодаря кислороду, освобождаемому в процессе биосинтеза, многие организмы стали извлекать из потребляемой пищи (корма) больше энергии, стали лучше компенсироваться их энергетические затраты.

Благодаря обилию кислорода и органических молекул возник процесс адаптации цепи транспорта электронов с НАДФ на кислород, что способствовало появлению аэробного типа диссимиляции. Предполагают далее, что первыми аэробами были зеленые растения и хемосинтезирующие микроорганизмы.

Особый вопрос связан с происхождением ферментов. Несомненно, что они являются эволюционным приобретением организмов. Предполагают, что в ходе эволюции ферменты усложнялись постепенно. Однако убедительных объяснений механизма возникновения первых ферментов нет, также как и нет объяснений характера первых ферментативных реакций.

Вопросы для обсуждения

1. Какова роль обмена веществ и энергии в жизни живых существ?

2. Что такое энергия и каковы ее формы?

3. Применимы ли к живым системам законы термодинамики?

4. Как организмы используют энергию? б. Какова связь между световой энергией и пигментами растений? Что происходит, когда свет падает на хлорофилл?

6. Почему энергия, запасенная в глюкозе, не может использоваться прямым образом для обеспечения биологических реакций?

7. Какова роль дыхания в подготовке энергии к использованию?

8. Какова роль гликолиза, цикла Кребса и цепи переноса электронов в «улучшении» энергии? Каково биологическое значение цикла Кребса?

9. Можете ли вы написать суммарное уравнение для превращения глюкозы в лактат?

10. Какова природа энергетической «валюты»?

11. Как используется АТФ в биологической работе?

12. Какова роль АТФ в транспорте ионов через клеточную мембрану?

13. Как вы понимаете роль АТФ в росте клеток и биосинтезе?

14. Полное окисление глюкозы дает 636 ккал энергии (глюкоза + О2 ® Н2 О + СО2 + 636 ккал). В процессе гликолиза глюкозы продуцируются две молекулы АТФ (глюкоза — 2 АТФ + 2 пировиноградная кислота). Распад одной молекулы АТФ до одной молекулы АДФ дает 8 ккал (АТФ ® АДФ + РО4 + 8 ккал). Сколько энергии остается в двух молекулах пировиноградной кислоты, если допустить, что гликолиз эффективен на 100%?

15. Сколько молекул АТФ необходимо для синтеза в одну секунду ДНК, РНК, белка, липидов и полисахаридов в клетках человека, если допустить, что их около 3 х 102 в организме взрослого человека и что их биосинтетическая способность является такой же, как и в Е. coli (см. табл. 7).

16. Как много энергии необходимо для транспорта 3 эквивалентов Nа+ из клетки в жидкую среду и 2 эквивалентов К+ из жидкой среды в клетку при условии, что концентрация Na+ составляет в клетках 10 мМ, в среде — 100 мМ, тогда как концентрация K+ равна 100 мМ в клетке и б мМ в среде?

17. Опишите свойства автотрофов и гетеротрофов с точки зрения ввода и использования энергии.

18. Что представляют собой АТФ и АДФ?

19. Каковы пути поступления веществ в клетки?

20. Каким образом можно демонстрировать существование «насоса» Na++ в эукариотических клетках?

21. Какие виды биологической работы осуществляются в клетках?

22. Приведите примеры биосинтетической способности клеток.

23. Дайте определения и перечислите основные свойства автотрофных, гетеротрофных, и миксотрофных организмов.

24. Если концентрация какой-либо аминокислоты в клетке составляет 10- 3 , то как долго это количество аминокислот будет поддерживать синтез белка при частоте, количественно выражающейся в 1´10-13 г вновь синтезированного белка в течение 30 минут, затрачиваемых на удвоение клеток?

25. Что вы знаете о происхождении разных типов метаболизма?

26. Что вы понимаете под энтропией?

Литература

Альберте Б.. Брей Д., Льюис Дж., Рэфф М„ Роберте К., Уотсон Дж. Молекулярная биология клетки. М.: Мир. 1994. Т . 1. 615 стр .

Стройтер Л . Биохимия . М .: Мир . 1985. Т . 2. 240 стр .

Bray D. Protein molecules as computational elements in living cells. Nature , 1995, Vol . 376, 307-312.

Глава VIII

РАЗМНОЖЕНИЕ, РОСТ И ИНДИВИДУАЛЬНОЕ РАЗВИТИЕ ОРГАНИЗМОВ

Размножение — это свойство организмов производить потомство или способность организмов к самовоспроизведению. Являясь важнейшим свойством живого, размножение обеспечивает непрерывность жизни, продолжение видов

Процесс размножения исключительно сложен и связан не только с передачей генетической информации от родителей к потомству, но и с анатомическими и физиологическими свойствами организмов, с их поведением, гормональным контролем. Размножение организмов сопровождается процессами их роста и развития.

Для живых существ характерно чрезвычайное разнообразие в способах размножения. Тем не менее различают два основных способа размножения — бесполое и половое (рис. 77). Бесполое размножение, или апомиксис (от греч. аро — без, mixis — смешение), представляет собой процесс, в котором участвует лишь один родитель (клетка или многоклеточный организм). Напротив, в половом размножении участвует два родителя, каждый из которых имеет собственную репродуктивную систему и продуцирует половые клетки (гаметы), которые после слияния образуют зиготу (оплодотворенное яйцо), дифференцирующуюся затем в эмбрион. Следовательно, при половом размножении имеет место смешение наследственных факторов, т. е. процесс, называемый амфимикси-сом (от греч. amphi — с обеих сторон, mixis — смешение).

§ 28 Бесполое размножение

Бесполое размножение характерно для организмов многих видов как растений, так и животных. Оно встречается у вирусов, бактерий, водорослей, грибов, сосудистых растений, простейших, губок, кишечнополостных, мшанок и оболочников.

Наиболее простая форма бесполого размножения характерна для вирусов. Их репродуктивный процесс связан с молекулами нуклеиновых кислот, со способностью этих молекул к самоудвоению и основан на специфичности относительно слабых водородных связей между нуклеотидами.

Применительно к другим организмам, размножающимся бесполым путем, различают вегетативное размножение и размножение спорообразованием.

Вегетативное размножение — это размножение, при котором из части, отделившейся от материнского организма, развивается новый организм. Этот вид размножения характерен как для одноклеточных, так и многоклеточных организмов, но имеет у них разное проявление.

У одноклеточных организмов вегетативное размножение представлено такими формами, как деление, множественное деление и почкование. Деление путем простой перетяжки с образованием при этом из одного родительского организма двух дочерних присуще бактериям и сине-зеленым водорослям (цианобактериям). Напротив, размножение делением бурых и зеленых водорослей, а также одноклеточных животных (саркодовых, жгутиковых и инфузорий) происходит путем митотического деления ядра с последующей перетяжкой цитоплазмы.

Размножение путем множественного деления (шизогонии) заключается в делении ядра с последующим разделением цитоплазмы на части. В результате такого деления из одной клетки образуется несколько дочерних организмов. Примером множественного деления является размножение малярийного плазмодия (Р. vivax) в эритроцитах человека. В этом случае у плазмодиев происходит повторяющееся много раз деление ядра без цитокинеза, после чего следует и цитокинез. В результате этого один плазмодий дает начало 12-24 дочерним организмам.

У многоклеточных растительных организмов вегетативное размножение путем деления осуществляется черенками, луковицами, листьями, корневищами. Но это по существу искусственное размножение, используемое в сельскохозяйственной практике. Размножение высших растений в искусственных условиях возможно и из одной клетки. Организмы, развивающиеся из одной клетки, обладают всеми свойствами исходного многоклеточного организма. Это размножение получило название клонального микроразмножения. В качестве одной из форм вегетативного размножения могут служить прививки, или трансплантации, многих культурных растений, заключающиеся в пересадке почки или части побега от одного растения к другому. Конечно, это тоже способ размножения, который в природе не встречается, но в сельском хозяйстве используется очень широко.

У многоклеточных животных вегетативное размножение происходит путем фрагментации их тела на части, после чего каждая часть развивается в новое животное. Такое размножение характерно для губок, кишечнополостных (гидр), немертин, плоских червей, иглокожих (морских звезд) и некоторых других организмов. Близкой формой к вегетативному размножений животных фрагментацией является полиэмбриония животных, заключающаяся в том, что на определенной стадии развития эмбрион разделяется на несколько частей, каждая из которых развивается в самостоятельный организм. Полиэмбриония встречается у броненосцев. Однако последние размножаются половым путем. Поэтому полиэмбриония является скорее своеобразной стадией в половом размножении, а потомство, возникающее в результате полиэмбрионии, представлено монозиготными близнецами.

Почкование заключается в том, что на материнской клетке образуется бугорок (вырост) с ядром, который затем отделяется и становится самостоятельным организмом. Почкование встречается как у одноклеточных растений, например, у дрожжей, так и у одноклеточных животных, например, инфузорий отдельных видов.

Размножение спорообразованием связано с образованием специализированных клеток — спор, которые содержат ядро, цитоплазму, покрыты плотной оболочкой и способны к длительному существованию в неблагоприятных условиях, что способствует, кроме того, и их расселению. Наиболее часто такое размножение встречается у бактерий, водорослей, грибов, мхов, папоротникообразных.

У некоторых зеленых водорослей из отдельных клеток могут формироваться так называемые зооспоры.

Среди животных размножение снорообразованием отмечается у споровиков, в частности, у малярийного плазмодия.

У организмов многих видов бесполое размножение может чередоваться с половым размножением (см. § 31).

§29 Половое размножение. Сперматогенез

и овогенез

Половое размножение встречается как у одноклеточных, так и у многоклеточных растений и животных.

Как отмечено в главах II и III, половое размножение у бактерий осуществляется путем конъюгации, служащей аналогом полового процесса и являющейся системой рекомбинации этих организмов, тогда как у простейших половое размножение происходит тоже путем конъюгации либо путем сингамии и аутогамии.

У многоклеточных организмов (растений и животных) половое размножение связано с образованием зародошевых или половых клеток (гамет), оплодотворением и образованием зигот.

Половое размножение является значительным эволюционным приобретением организмов. С другой стороны, оно способствует пересортировке генов, появлению разнообразия организмов и повышению их конкурентоспособности в непрерывно меняющихся условиях окружающей среды.

У одноклеточных организмов половое размножение существует в нескольких формах. У бактерий половое размножение можно анало-гизировать с имеющими место у них конъюгацией, заключающейся в передаче плазмидной или хромосомной ДНК от клеток-доноров (содержащих плазмиды) к клеткам-реципиентам (не содержащих плазмиды), а также с трансдукцией бактерий, заключающейся в передаче генетического материала от одних бактериальных клеток к другим фагам. Конъюгация встречается также у инфузорий, у которых во время этого процесса происходит переход ядер от одних особей к другим, после чего следует деление последних.

Одной из распространенных форм полового размножения у одноклеточных животных, например, у паразитических споровиков, является копуляция. Половое размножение у них заключается в слиянии двух особей, которые являются гаметами, в одну, являющуюся споровой формой, из которой затем развивается новый организм. Независимо от способа слияния генетического материала у одноклеточных организмов существенной особенностью этого слияния является то, что оно сопровождается генетической рекомбинацией.

У многоклеточных растений и животных половое размножение происходит через образование женских и мужских половых клеток (яйцеклеток и сперматозоидов), последующее оплодотворение яйцеклетки сперматозоидом и образование зиготы. У растений половые клетки продуцируются в специализированных репродуктивных структурах, у животных они продуцируются в половых железах, называемых гонадами (от греч. gone — семя).

Между соматическими и половыми клетками животных существует важное различие. Оно заключается в том, что соматические клетки способны к делению, т. е. репродуцируют себя и кроме того из них образуются половые клетки. Напротив, половые клетки не делятся, но они «начинают» репродукцию целого организма.

Диплоидные соматические клетки, из которых образуются мужские половые клетки, называют сперматогониями, а диплоидные соматические клетки, из которых образуются женские половые клетки — овогониями. Процесс образования (роста и дифференциации) мужских и женских половых клеток носит название гаметогенеза.

Гаметогенез основан на мейозе (от греч. meiosis — понижать), который представляет собой процесс редукционного деления ядер клеток, сопровождающегося понижением числа хромосом на ядро. Мейоз происходит в специализированных клетках репродуктивных органов живых существ, размножающихся половым путем (рис. 78). Например, у папоротникообразных мейоз встречается в специализированных клетках спорангий, располагающихся на нижней поверхности листьев этих растении и развивающихся в споры, а затем в га-метофиты. Последние существуют раздельно, продуцируя в конечном итоге мужские и женские гаметы. У цветковых растений мейоз осуществляется в специализированных клетках семяпочек, которые развиваются в споры.

Последние продуцируют гаметофит с одной яйцеклеткой.

Кроме того у этих растений мейоз происходит также в специализированных клетках пыльников, которые также развиваются в споры, продуцирующие в конечном итоге пыльцу с двумя мужскими гаметами. У земляных червей, которые являются гермафродитами и содержат мужские половые органы в одном сегменте тела, а женские — в другом и которые характеризуются способностью к перекрестному оплодотворению между разными особями, имеется способность одновременно к сперматогенезу и овогенезу.

У млекопитающих мейоз осуществляется в специализированных клетках семенников и яичников, в которых продуцируются мужские и женские гаметы соответственно. Выявлены белки — индукторы мейоза.

В процессе мейоза дипдоидное число хромосом (2п), которое характерно для соматических клеток (клеточных ядер) и незрелых зародышевых клеток, изменяется до гаплоидного числа (In), характерного для зрелых зародышевых клеток. Таким образом, в результате гаметогенеза половые клетки получают лишь половину хромосом соматических клеток (рис. 79).

Поведение хромосом в период гаметогенеза у животных является одинаковым как у мужских, так и у женских особей. Однако пол различается во времени происхождения разных стадий мейоза, что особенно заметно у человека. У мужских особей в постпубертатный период полный процесс мейоза завершается примерно в течение двух месяцев, в то время как у женских особей первое мейотическое деление начинается еще в фетальном яичнике и не завершается, пока не начнется овуляция, которая наступает у них примерно в пятнадцать лет.

У высших животных в случае мужских особей мейоз сопровождается образованием четырех функционально активных гамет (рис. 80). Напротив, у женских особей каждый овоцит II порядка дает лишь одну яйцеклетку. Другие ядерные продукты женского мейоза представляют собой три редукционных тельца, которые не участвуют в размножении и дегенерируют.

Мейоз состоит из двух делений клеточного ядра, которые называют мейотическими. Первое мейотическое деление ядра разделяет членов каждой пары гомологичных хромосом после того, как они спарились одна с другой (синапсис) и обменялись генетическим материалом (кроссинговер). В результате этого разделения образуется два гаплоидных ядра. Второе мейотическое деление разделяет две продольные половины хромосом (хроматиды) в каждом из этих ядер, продуцируя четыре гаплоидных ядра.

В процессе гаметогенеза происходит также дифференциация яйцеклеток (овогенез) и сперматозоидов (сперматогенез), являющаяся пререквизитом их функций. Будучи высокоспециализированными структурами, яйцеклетки животных намного крупнее сперматозоидов, обычно неподвижны и содержат питательный материал, который обеспечивает развитие эмбриона в начальном периоде после оплодотворения. Сперматозоиды большинства животных обладают жгутиком, обеспечивающим независимость их движения.

Мейоз имеет выдающееся биологическое значение. Благодаря мейозу в клетках организмов поддерживается постоянное число хромосом независимо от количества поколений. Следовательно, мейоз поддерживает постоянство видов. Наконец, в мейозе в результате кроссинговера происходит рекомбинация генов, которая является одним из факторов эволюции, хотя его значение является и меньшим по сравнению с мутагенезом.

Сперматогенез — это процесс образования зрелых мужских половых клеток. Сперматозоиды развиваются в мужских половых железах (семенниках, или тестисах) из специализированных соматических клеток (рис. 81). Такими специализированными клетками служат так называемые примордиальные зародышевые клетки, которые мигрируют к тестисам в раннем периоде эмбриогенеза мужского индивидуума. Следовательно, примордиальные клетки являются прародителями (предшественниками) зрелых половых клеток. У млекопитающих после достижения половой зрелости сперматозоиды образуются практически всю жизнь.

Семенники человека состоят из многочисленных канальцев, стенки которых сформированы слоями клеток, которые находятся на разных стадиях развития сперматозоидов. Наружный слой канальцев образован крупными клетками, называемыми сдерма-тогониями. Эти клетки содержат диплоидный набор хромосом и являются в тестисах потомками примордиальных зародышевых клеток.

В период половой зрелости индивида часть сперматогоний перемещается во внутренний слой канальцев, где в результате мейоза они развиваются в клетки, получившие название сперматоцитов первого порядка (сперматоцитов I), затем в спер-матоциты второго порядка (сперматоциты II) и, наконец, в сперматиды, являющиеся гаплоидными зародышевыми клетками, дифференцирующимися в конечном итоге в зрелые сперматозоиды. Таким образом, в обобщенном виде можно сказать, что сперматогенез инициируется в диплоид-ных соматических клетках (сперматогони-ях), после чего следует период созревания зародышевых клеток, в котором происходит два деления ядер путем мейоза, приводящего к образованию сперматид.

Мейоз в сперматогенезе протекает в несколько стадий (фаз). Между делениями имеются две интерфазы. Таким образом, мейотическое деление можно представить в виде серии следующих одно за другим событий, а именно: интерфаза I ® первое мейотическое деление (ранняя профаза I, поздняя профаза I, метафаза I, анафаза I, телофаза I) ® интерфаза II (интерокинез) ® второе мейотическое деление (профаза II, метафаза II, анафаза II, телофаза II). Процесс мейоза очень динамичен, поэтому микроскопические различия между разными стадиями отражают скорее не характер самих стадий, а скорее свойства хромосом на разных стадиях (рис. 82). Интерфаза I характеризуется тем, что в ней происходит репликация хромосом (удвоение ДНК), которая к началу ранней профазы I почти полностью завершается.

Первое мейотическое деление начинается в первичном сперматоците и характеризуется длинной профазой, которая состоит из переходящих одна в другую профазы I и профазы II. В профазе I различают пять главных стадий — лептонему, зигонему, пахинему, диплонему и диакинез.

На стадии лептонемы хромосомы в ядре представлены в виде тонких спирализованных нитей, содержащих многочисленные темноок-рашенные гранулы (хромомеры). Расщепления хромомер и нитей не отмечают, но считают, что хромосомы на уровне этой стадии являются двойными, т. е. диплоидными. Гомологи каждой хромосомной пары объединяются хромомерами вдоль их длины по принципу застежки.

На стадии зигонемы характерно установление синапсов между гомологичными хромосомами, в результате чего образуются спаренные хромосомы (биваленты). Хромосомы Х и Y ведут себя по сравнению с аутосомами несколько по-другому. Они конденсируются в темноокрашиваемые гетерохроматиновые тела, спариваемые в результате наличия гомологичных районов на их концах.

На стадии пахинемы, которая является наиболее долгой во времени стадией в мейотической профазе, происходит конденсация бивалентов и разделение каждой хроматиды надвое, в результате чего каждый бивалент представляет собой сложную спиральную структуру, состоящую из четырех сестринских хроматид (тетрад). В конце этой стадии начинается разделение спаренных хромосом-бивалентов. Теперь гомологичные хромосомы могут наблюдаться рядом. Поэтому в некоторых препаратах можно видеть четыре хромосомы, которые образуются в результате дупликации каждого гомолога, формирующего сестринские хроматиды. На этой стадии происходят обмены между гомологами и формирование хиазм.

На стадии диплонемы происходит укорачивание, утолщение и взаимное отталкивание сестринских хроматид, в результате чего хроматиды в биваленте почти разъединены. Разделение является неполным по той причине, что в каждой паре хромосом еще не расщеплена центромера. Что касается бивалентов, то они удерживаются на различных местах вдоль их длины с помощью хиазм, которые являются структурами, сформированными между гомологичными хроматидами в результате предыдущего кроссинговера между синаптически связанными гомологами. В хороших препаратах можно наблюдать от одной до нескольких хиазм в зависимости от длины бивалента. Каждая наблюдаемая на этой стадии хиазма представляет собой результат обмена, который встречался между несестринскими хроматидами в течение стадии пахинемы. Поскольку сжатие и отталкивание бивалентов усиливается, хиазмы двигаются к концам хромосом, т. е. происходит терминализа-ция хромосом. В конце диплонемы наступает деспирализация хромосом; гомологи продолжают отталкиваться друг от друга.

На стадии диакинеза, которая сходна с диплотеной, продолжается укорочение бивалентов и наступает ослабление (уменьшение) хиазм, вследствие чего формируются дискретные единицы в виде хроматид (четырех). Непосредственно после завершения этой стадии происходит растворение ядерной мембраны.

В метафазе I биваленты достигают наибольшей конденсации. Становясь овальными, они располагаются в экваториальной части ядра, где формируют экваториальные пластинки мейотической метафазы I. Форма каждого бивалента определяется числом и локализацией хиазм. У мужчин число хиазм на бивалент в метафазе I составляет обычно 1—5. Бивалент XY становится палочковидным в результате одиночной терминально расположенной хиазмы.

В анафазе I начинается движение противоположных центромер к противоположным полюсам клетки. В результате этого происходит разделение гомологичных хромосом. Каждая хромосома состоит теперь из двух хроматид, удерживаемых центромерой, которая не делится и остается интактной. Этим анафаза I мейоза отличается от анафазы митоза, при котором центромера подвергается разделению. Важно заметить, что благодаря кроссинговеру каждая хро-матида является генетически различной.

В стадии телофазы I хромосомы достигают полюсов, чем заканчивается первое мейотическое деление. После телофазы I наступает короткая интерфаза (интеркинез), в которой хромосомы деспи-рализуются и становятся диффузными, или телофаза I переходит прямо в профазу II второго мейотического деления. Ни в одном, ни в другом случае репликации ДНК не отмечается. После первого мейотического деления клетки называют спермат&цитами II порядка. Количество хромосом в каждой такой клетке снижается от 2п до п, но содержание ДНК еще не изменяется.

Второе мейотическое деление осуществляется в течение нескольких фаз (профаза II, метафаза II, анафаза II, телофаза II) и сходно с митотическим делением. В профазе II хромосомы вторичных спер-матоцитов остаются у полюсов. В метафазе П центромера каждой из двойных хромосом делится, обеспечивая каждую новую хромосому собственной центромерой. В анафазе II начинается формирование веретена, к полюсу которого двигаются новые хромосомы. В телофазе II второе мейотическое деление заканчивается, в результате чего каждый сперматоцит II порядка дает два спермати-да, из которых дифференцируются затем сперматозоиды. Как и во вторичном сперматоците, число хромосом в сперматиде является гаплоидным (п). Однако хромосомы сперматид являются одиночными, тогда как хромосомы вторичных сперматоцитов II являются двойными, будучи построенными из двух хроматид. Следовательно, ядро каждого сперматида имеет одиночный набор негомологичных хромосом. Вторичное мейотическое деление является делением митотического типа (экваториальным делением). Оно разделяет двойные сестринские хроматиды и отличается от редукционного деления, в котором гомологичные хромосомы разделены. Единственное существенное отличие от классического митоза заключается в том, что здесь имеется гаплоидный набор хромосом.


Итак, первое мейотическое деление сперматоцитов I порядка приводит к образованию двух вторичных сперматоцитов (II порядка). Обе хро-матиды структур, образующиеся в результате редукционного деления, являются сестринскими хроматида-ми. Последние возникают в результате репликации, предшествующей первому мейотическому делению. Второе мейотическое деление каждого вторичного сперматоцита приводит к образованию четырех сперма-тидов. Таким образом, в типичном мейозе клетки делятся дважды, тогда как хромосомы только один раз (рис. 83).

Конечный этап в сперматогенезе связан с дифференциацией, которая заканчивается тем, что каждый из сравнительно больших, сферических неподвижных сперматидов превращается в небольшой вытянутый подвижный сперматозоид.

У большинства взрослых (сексуально зрелых) мужских особей животных сперматогенез происходит в семенниках постоянно или периодически (сезонно). Например, у насекомых для завершения цикла сперматогенеза требуется лишь несколько дней, тогда как у млекопитающих этот цикл затягивается на недели и даже месяцы. У взрослого человека сперматогенез проходит в течение всего года. Время развития примитивных сперматогоний В зрелые сперматозоиды составляет около 74 дней.

Мужские половые клетки, продуцируемые организмами разной видовой принадлежности, характеризуются подвижностью и чрезвычайным разнообразием в размерах и по структуре (рис. 84). Например, длина сперматозоидов D. melanogaster составляет 1,76 мм, что в 300 раз превышает длину сперматозоидов человека. Больше того, длина сперматозоидов D. bifurca составляет более 28 мм, что превышает длину самих насекомых этого вида в двадцать раз.

Каждый сперматозоид человека состоит из трех отделов — головки, средней части и хвоста (рис. 85). В головке сперматозоида располагается ядро. В нем содержится гаплоидный набор хромосом. Головка снабжена акросомой, которая содержит литические ферменты, необходимые сперматозоиду для вступления в яйцеклетку. В головке локализуется также две центриоли — прокси-мальная, которая побуждает деление оплодотворенной сперматозоидом яйцеклетки, и дистальная, которая дает начало аксимальному стержню хвоста. В средней части сперматозоида располагаются ба-зальное тельце хвоста и митохондрии. Хвост (отросток) сперматозоида образован внутренним аксимальным стержнем и внешним футляром, имеющим цитоплазматическое происхождение. Сперматозоиды человека характеризуются значительной подвижностью.

Овогенез — это процесс формирования яйцеклеток. Его функциями являются обеспечение гаплоидного набора хромосом в ядре яйцеклетки и обеспечение питательных потребностей зиготы. Овогенез в своем проявлении в основном сопоставим со сперматогенезом.

У млекопитающих и человека овогенез начинается еще во внутриутробном периоде (до рождения). Овогонии, представляющие собой мелкие клетки с довольно крупным ядром и локализованные в фолликулах яичников, начинают в фолликулах дифференцироваться в первичные овоциты. Последние формируются уже на третьем месяце внутриутробного развития, после чего они вступают в профазу первого мейотического деления. Ко времени рождения девочки все первичные овоциты уже находятся в профазе первого мейотического деления. Первичные овоциты остаются в профазе вплоть до наступления половой зрелости женского индивида. Когда при наступлении половой зрелости фолликулы яичника созревают, мейотическая профаза в первичных овоцитах возобновляется. Первое мейотическое деление для каждой развивающейся яйцеклетки завершается вскоре перед временем овуляции этой яйцеклетки. В результате первого мейотического деления и неравномерного распределения цитоплазмы одна образовавшаяся клетка становится вторичным овоцитом, другая — полярным (редукционным) тельцем.

Вторичное мейотическое деление у человека наступает, когда вторичный овоцит (развивающаяся яйцеклетка) проходит из яичника в фаллопиеву трубу. Однако это деление не завершается до тех пор, пока во вторичный овоцит не проникает ядерное содержимое сперматозоида, что происходит обычно в фаллопиевой трубе. Когда ядро сперматозоида проникает во вторичный овоцит, то последний делится, в результате чего образуется овотида (зрелая яйцеклетка) с пронуклеусом, содержащим одиночный набор из 23 материнских хромосом. У некоторых других видов образуются яйцеклетки, определяющие как мужской пол, так и женский. Важно подчеркнуть, что здесь происходит также расщепление и рекомбинация генов, основу которой создает расхождение хромосом. Другая клетка, образующаяся в результате второго мейотического деления у человека, является вторым полярным тельцем, не способным к дальнейшему развитию. В это время подвергается делению надвое и полярное (редукционное) тельце. Таким образом, развитие одного овоцита первого порядка сопровождается образованием одной овотиды и трех редукционных телец. В яичниках таким путем на протяжении жизни обычно созревает 300-400 ово-цитов, но в месяц созревает лишь один овоцит. В течение дифференциации яйцеклеток формируются мембраны, уменьшается в размере их ядро.

У некоторых видов животных овогенез протекает быстро и непрерывно и приводит к образованию большого количества яйцеклеток.

Вопреки сходству со сперматогенезом овогенез характеризуется некоторыми специфическими особенностями. Питательный материал (желток) первичного овоцита не распределяется поровну между четырьмя клетками, которые образуются в результате мей-отических делений. Основное количество желтка сохраняется в одной большой клетке, тогда как полярные тельца содержат очень мало этого вещества. Первые и вторые полярные тельца получают в результате делений те же самые хромосомные наборы, что и вторичные овоциты, но они не становятся половыми клетками. Поэтому яйцеклетки намного богаче питательным материалом по сравнению со сперматозоидами. Особенно сильно это различие проявляется в случае яйцекладущих животных.

Яйцеклетки млекопитающих имеют овальную или несколько вытянутую форму (рис. 86) и характеризуются типичными чертами клеточного строения. Они содержат все структуры, характерные для соматических клеток, однако внутриклеточная организация яйцеклетки очень специфична и определяется тем, что яйцеклетка является также и средой, которая обеспечивает развитие зиготы. Одна из характерных особенностей яйцеклеток заключается в сложности строения их оболочек. У очень многих животных различают первичную, вторичную и третичную оболочки яйцеклеток. Первичная оболочка (внутренняя) формируется еще на стадии овоцита. Представляя собой поверхностный слой овоцита, она

имеет сложную структуру, т. к. пронизана выростами прилегающих к ней фолликулярных клеток. Вторичная (средняя) оболочка полностью сформирована фолликулярными клетками, а третичная (наружная) образована веществами, представляющими собой продукты секреции желез яйцеводов, через которые проходят яйцеклетки. У птиц, например, третичными оболочками яйцеклеток служат белковая, подскорлуповая и скорлуповая оболочки. Для яйцеклеток млекопитающих характерно наличие двух оболочек. Структура внутриклеточных компонентов яйцеклеток специфична в видовом отношении, а иногда имеет даже индивидуальные особенности.

§30 Оплодотворение

Оплодотворение — это процесс объединения мужской и женской гамет, который приводит к формированию зиготы и последующему развитию нового организма. В процессе оплодотворения происходит установление диплоидного набора хромосом в зиготе, что определяет выдающееся биологическое значение этого процесса.

В зависимости от видовой принадлежности организмов у животных, размножающихся половым путем, различают наружное и внутреннее оплодотворение.

Наружное оплодотворение происходит в окружающей среде, в которую поступают мужские и женские половые клетки. Например, наружным является оплодотворение у рыб. Выделяемые ими мужские (молока) и женские (икра) половые клетки поступают в воду, где и происходит их «встреча» и объединение. Данные об оплодотворении у морских ежей свидетельствуют о том, что уже через 2 секунды после соприкосновения сперматозоидов и яйцеклетки наступают изменения в электрических свойствах плазменной мембраны яйцеклетки. Слияние содержимого гамет наступает через 7 секунд.

Внутреннее оплодотворение обеспечивается переносом сперматозоидов из мужского организма в женский в результате полового акта. Такое оплодотворение встречается у млекопитающих, причем центральным моментом здесь является исход встречи между половыми клетками. Считают, что в яйцеклетку этих животных проникает ядерное содержимое лишь одного сперматозоида. Что касается цитоплазмы сперматозоида, то у одних животных она поступает в яйцеклетку в небольшом количестве, у других совсем не поступает в яйцеклетку.

У человека оплодотворение происходит в верхней части фаллопиевой трубы, причем в оплодотворении, как и у других млекопитающих, участвует лишь один сперматозоид, ядерное содержимое которого поступает в яйцеклетку. Иногда в фаллопиевой трубе может оказаться не одна, а две или более яйцеклеток, в результате чего возможно рождение двоен, троен и т. д. Например, в XVIII в. зарегистрирован случай рождения в России одной матерью (женой крестьянина Федора Васильева) 16 двоен, 7 троен и 4 четверней (всего 69 детей).

В результате оплодотворения в оплодотворенной яйцеклетке восстанавливается диплоидный набор хромосом. Яйцеклетки способны к оплодотворению в течение примерно 24 часов после овуляции, тогда как оплодотворяющая способность сперматозоидов сохраняется до 48 часов.

В механизмах оплодотворения многое еще остается неясным. Предполагают, что проникновение в яйцеклетку ядерного материала лишь одного из множества сперматозоидов связано с изменениями электрических свойств плазматической мембраны яйцеклетки. По вопросу о причинах активации сперматозоидом метаболизма яйцеклетки существует две гипотезы. Одни исследователи считают, что связывание сперматозоида с внешними рецепторами на поверхности клеток представляет собой сигнал, который через мембрану поступает внутрь яйцеклетки и активирует там инозитолтрифосфат и ионы кальция. Другие полагают, что сперматозоиды содержат специальный инициирующий фактор.

Оплодотворенная яйцеклетка дает начало зиготе, развитие организмов через образование зигот называют зигогенезом. Экспериментальные разработки, выполненные в последние годы, показали, что оплодотворение яйцеклеток млекопитающих, включая человека, возможно и в пробирке, после чего зародыши, развившиеся в пробирке, могут быть имплантированы в матку женщины, где они могут развиваться дальше. К настоящему времени известны многочисленные случаи рождения «пробирочных» детей (см. раздел VI). Установлено также, что оплодотворить яйцеклетку человека способны не только сперматозоиды, но и сперматиды. Наконец, возможно оплодотворение яйцеклеток (лишенных искусственно ядер) млекопитающих ядрами их соматических клеток (см. § 35).

В отличие от зигогенеза, многие животные организмы способны к размножению в естественных условиях путем партеногенеза (от греч. parthenos — девственница и genesis — рождение). Различают облигатный и факультативный партеногенез. Облигатный партеногенез — это размножение организмов из неоплодотворенной яйцеклетки. Такой партеногенез служит способом размножения животных более 90 видов, включая некоторых позвоночных. Примером облигатного партеногенеза является размножение кавказской скальной породы ящерицы, представленной только женскими особями. Напротив, факультативный партеногенез заключается в том, что яйцеклетки способны развиваться как без оплодотворения, так и после оплодотворения. Факультативный партеногенез в свою очередь бывает женским и мужским. Женский партеногенез част у пчел, муравьев, коловраток, у которых из неоплодотворенных яйцеклеток развиваются самцы. Мужской партеногенез встречается у некоторых изогамных водорослей.

У растений также известны случаи, когда зародыш развивается из не оплодотворенной яйцеклетки. Как отмечено выше, это явление получило название апомикса. Оно очень широко встречается у многих покрытосеменных растений, в т. ч. у культивируемых, таких, как свекла, хлопчатник, лен, табак и другие.

Наряду с естественным партеногенезом различают искусственный (индуцированный) партеногенез, который можно вызвать раздражением яйцеклеток с помощью физических или химических факторов, что ведет к активации яйцеклеток и, как следствие, к развитию неоплодотворенных яиц. Искусственный партеногенез наблюдали в случае животных, принадлежащих ко многим систематическим группам — иглокожим, червям, моллюскам и даже некоторым млекопитающим.

Известна форма партеногенеза, получившая название андроге-неза (от греч. andros — мужчина, genesis — рождение). Если в яйцеклетке инактивировать ядро и если после этого в нее проникнет несколько сперматозоидов, то из такой яйцеклетки в результате слияния мужских (сперматозоидных) ядер развивается мужской организм. Широко известны эксперименты В. Л. Астаурова (1904-1974), который показал андрогенез на тутовом шелкопряде. Эти опыты заключались в следующем. В яйцеклетках шелкопряда одного вида (Bombyx mandarina) с помощью высокой температуры инактивировали ядра, а затем такие яйцеклетки оплодотворяли сперматозоидами шелкопряда другого вида (В. mori). Проникнув в яйцеклетки, последние сливались между собой, что давало начало новым организмам, которые по своим свойствам оказались отцовскими организмами (В. mori). Скрещивания этих организмов с самками В. mori давало потомство, принадлежащее к В. mori.

Роль партеногенеза и его форм в природе невелика, т. к. он не обеспечивает широких адаптивных возможностей организмов. Однако его использование имеет практическое значение. В частности, Б. Л. Астауровым был разработан способ получения партеноге-нетического потомства у тутового шелкопряда, что широко используется в промышленном производстве шелка.

В отличие от зигогенеза и партеногенеза существует гиногенез (от греч. gyne — женщина), который представляет собой псевдогамию, заключающуюся в том, что сперматозоид встречается с яйцеклеткой и активирует ее, но ядро сперматозоида не сливается с ядром яйцеклетки. В этом случае позволяющее потомство состоит только из женских особей. У отдельных видов круглых червей, рыб и земноводных гиногенез служит нормальной формой размножения, давая потомство, состоящее только из самок. Гиногенез можно вызвать и искусственно с помощью факторов, способных разрушать клеточные ядра (радиации, температуры и др.). В частности, описаны случаи искусственного гиногенеза у тутового шелкопряда, у некоторых видов рыб и амфибий. Получение таких форм может иметь некоторое практическое значение в случае хозяйственно полезных видов.

Как было отмечено выше, оплодотворение у цветковых (покрытосеменных) имеет существенную отличительную особенность в виде двойного оплодотворения (С. Г. Навашин, 1896), которое сводится к тому, что в зародышевом мешке гаплоидная яйцеклетка и дипло-идная центральная клетка оплодотворяются спермиями, в результате чего образуется диплоидный зародыш и триплоидная клетка, развивающаяся в клетки эндосперма (см. гл. II).

Партеногенез, андрогенез и гиногенез являются формами нарушения полового размножения. Предполагают, что эти формы возникли в ходе эволюции в результате частных эволюционных приспособлений.

§31 Чередование поколений

Организмам, размножающимся только половым путем, характерно чередование гаплоидной и диплоидной фаз в их развитии. У многих организмов, включая млекопитающих, это чередование имеет регулярный характер, и на нем основано сохранение видовых признаков организмов. Диплоидия способствует накоплению разных аллелей. Напротив, для организмов, которые могут размножаться как половым, так и бесполым путем, характерно чередование (смена) поколений, когда одно или несколько бесполых поколений организмов сменяется поколением организмов, размножающихся половым путем.

Различают первичное и вторичное чередование поколений. Первичное чередование поколений отмечается у организмов, развивших в ходе эволюции половой прогресс, но сохранивших способность к бесполому размножению, и заключается в регулярном чередовании полового и бесполого поколений (рис. 87). Оно встречается у животных (простейших), у водорослей и у всех высших растений. У простейших классическим примером первичного чередования поколений является бесполое размножение малярийного плазмодия в организме человека (шизогония) и половое — в организме малярийного комара. У растений половое поколение представлено гаметофитом, бесполое — спорофитом. Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита — диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.

Если проследить за соотношением между спорофитом и гаметофитом у растений разного уровня организации, то можно увидеть, что в ходе эволюции развитию подвергался спорофит, тогда как для гаметофиты была характерной редукция. Например, у мхов преобладающим является гаметофит (гаплоидное поколение), на котором живет спорофит. Но уже у папоротникообразных преобладающим является спорофит (диплоидное поколение) в виде хорошо развитого растения со стеблями и корнями, а гаметофит представлен слоем клеток, которые образуют пластину, прикрепляющуюся к почве с помощью ризоидов. Далее, у голосеменных гаметофит уменьшается до небольших количеств клеток, а у покрытосеменных мужской гематофит представлен лишь двумя клетками, женский — семью, тогда как спорофитом у голосеменных являются деревья (сосна, ель и другие), а покрытосеменных — деревья, кустарники, травы.

Между гаметофитом и спорофитом могут быть как сходства по морфологии и продолжительности жизни, так и различия по этим признакам. В первом случае это называют изоморфным чередованием поколений, во втором — гетероморфным.

Вторичное чередование поколений широко встречается у животных. Оно отмечается в формах гетерогонии и метагенеза. Гетерогония заключается в первичном чередовании полового процесса и партеногенеза. Например, у трематод половое размножение регулярно сменяется партеногенезом. У многих других организмов гетерогония зависит от сезона. Так, коловратки, дафнии и тли осенью размножаются путем зигогенеза (путем оплодотворения яйцеклеток и образования зигот), а летом — путем партеногенеза. Метагенез заключается в чередовании полового размножения и вегетативного (бесполового). Например, гидры размножаются обычно почкованием, но при понижении температуры образуют половые клетки. У кишечнополостных на некоторых стадиях развития происходит переход от полового размножения к вегетативному. У некоторых морских кишечнополостных полипоидное поколение правильно чередуется с медузоидным. Для полипоидного поколения характерно размножение так называемой стробиляцией (поперечными перетяжками), для медузоидного — половым путем (оплодотворение яиц, образование личинок и развитие полипов).

§32 Половой диморфизм. гермафродитизм

Для мужских и женских особей животных характерны различия в специфических фенотипических чертах (размеры, строение тела, окраска и другие свойства), а также в поведении. Различия между самками и самцами по их свойствам называют половым диморфизмом. У животных он встречается уже на низших ступенях эволюционного развития, например у круглых гельминтов, членистоногих, и достигает наибольшего выражения у позвоночных животных, у которых внешние различия между самцами и самками очень выразительны. У растений тех видов, для которых характерно наличие мужских и женских особей, также имеет место половой диморфизм, однако выражен он очень незначительно.

Если у животных мужские и женские половые клетки продуцируются одной и той же особью, имеющей как мужские, так и женские половые железы, то это явление носит название гермафродитизма. Термин «гермафродитизм» является сочетанием греческих имен Гермеса (бог мужской красоты) и Афродиты (богини женской красоты). Различают истинный и ложный гермафродитизм. Истинный гермафродитизм чаще всего встречается у организмов, находящихся на низких уровнях эволюции, например у плоских и кольчатых червей, а также у моллюсков. У плоских червей мужские и женские половые железы функционируют на протяжении всей жизни особи. Напротив, у моллюсков половые железы продуцируют яйцеклетки и сперматозоиды попеременно. Однако явление истинного гермафродитизма встречается и у более организованных существ. В частности, оно встречается у млекопитающих. Например, у свиней иногда отмечается развитие яичников на одной стороне тела, а развитие тестисов на другой, либо происходит развитие комбинированных структур (овотестисов), причем в обоих случаях имеет место синтеза функционально активных яйцеклеток и сперматозоидов. Таких животных относят к «промежуточному» полу, причем большинство особей промежуточного сексуального типа является особями женского пола с двумя ХХ-хромосомами. Некоторые из них характеризуются агрессивным поведением, а это свидетельствует о том, что хотя их тектикулярная ткань не содержит зародышевых клеток, секреция тестостерона, влияющая на поведение, все же имеет место. Аналогичное явление отмечено у коз.

Истинный гермафродитизм встречается и у человека, возникая в результате нарушений развития. Генотипами гермафродитов являются 46ХХ или 46XY, причем большинство случаев относится к XX (около 60%). Генотипы XX чаще всего встречаются у гермафродитов негроидных африканских популяций, тогда как генотипы XY чаще среди японцев. У гермафродитов обоих типов отмечена тенденция в сторону билатеральной ассиметрии гонад. Среди истинных гермафродитов встречаются также хромосомные мозаики, у которых соматические клетки содержат пару хромосом XX, другие — пару хромосом XY.

Известен и ложный гермафродитизм, когда индивидуумы обладают наружными половыми органами и вторичными половыми признаками, характерными для обоих полов, но продуцируют половые клетки лишь одного типа — мужские или женские.

Для большинства цветковых растений характерны гермафро-дитные цветки, которые обычно называют обоеполыми, поскольку в каждом цветке имеется пестик и тычинки. По этой причине плоды развиваются со всех цветков. Обоеполыми являются пшеница, вишня, яблоня и многие другие виды растений. Помимо обоеполых в ходе эволюции развились растения с разделением полов в пределах одного и того же вида, т. е. возникли однодомность и двудомность растений. Растения, содержащие одновременно пестичные (женские) и тычиночные (мужские) цветки получили название однодомных. У однодомных растений плоды развиваются только из пестичных цветков. Однодомными являются кукуруза, огурец, тыква и другие. Напротив, двудомными являются растения, содержащие либо пестичные, либо тычиночные цветки (в пределах одного и того же вида). У двудомных растений плодоносящими бывают только те, которые имеют пестичные цветки (женские особи). Двудомными являются тополь, клубника и другие виды древесных и травянистых растений.

Гермафродитизм у человека представляет одно из патологических состояний. Что касается растений, то знания об их гермафродитизме чрезвычайно важны для практики сельского хозяйства.

§33 Онтогенез, его типы и периодизация

Онтогенез (от греч. ontos — существо, genesis — развитие) — это полная история (цикл) развития индивидуального организма (животного или растения), начинающаяся с образования давших ему начало половых клеток и заканчивающаяся его смертью. Представления об онтогенезе (индивидуальной истории развития организма) основаны на данных о росте организма, дифференцировке его клеток и морфогенезе. Следовательно, онтогенез есть категория индивидуальная.

В противоположность онтогенезу видовой категорией является филогенез (от греч. phyle — племя, genesis — развитие) под которым со времен Э. Геккеля, впервые обосновавшего этот термин, понимают историю возникновения и развития вида (животных или растений). Между онтогенезом и филогенезом существует тесная связь, которая отражена в так называемом биогенетическом законе (Э. Геккель, Ф. Мюллер), который, как показали исследования, в принципе справедлив. Поскольку онтогенез индивидуума определяется определенными чертами филогенетического развития вида, к которому принадлежит данный индивидуум, то можно сказать, что онтогенез является основой филогенеза, с одной стороны, и результатом филогенеза — с другой.

Изучение фундаментальных основ онтогенеза имеет важное значение для понимания биологии и эволюции организмов. Однако, чтобы лучше узнать современное состояние учения об онтогенезе, рассмотрим вначале, как понимали рост и развитие организма в прошлые времена на примере организма человека.

Первые представления о росте и развитии восходят ко временам античного мира. Еще Гиппократ (460-377 гг. до н. э.) предполагал, что яйцеклетки уже содержат полностью сформированный организм, но в очень уменьшенном виде. Это представление затем нашло продолжение в учении о преформизме (от лат. preformatio — предобразование), которое особенно популярным оказалось в XVII—XVIII вв. Сторонниками преформизма были Гарвей, Мальпиги и многие другие видные биологи и медики того времени. Для преформистов спорный вопрос заключался лишь в том, в каких половых клетках преформирован организм — женских или мужских. Тех, кто отдавал предпочтение яйцеклеткам, называли овистами, а тех, кто большое значение придавал мужским половым клеткам, называли анималькулистами. Преформизм — это метафизическое учение от начала до конца, ибо оно отрицало развитие. Решающий удар преформизму нанес Ш. Бонне (1720-1793), который открыл в 1745 г. партеногенез на примере развития тлей из неоплодотворенных яиц. После этого преформизм уже не мог оправиться и стал терять свое значение.

В античном мире возникло и другое учение, противоположное преформизму и получившее впоследствии название эпигенеза (от греч. epi — после, genesis — развитие). Как и преформизм, эпигенез большое распространение получил также в XVII—XVIII вв. В распространении эпигенеза большое значение имели взгляды К. Ф. Вольфа (1733—1794), обобщенные в его книге «Теория развития» (1759). К. Ф. Вольф считал, что в яйце нет ни преформи-рованного организма, ни его частей, и что яйцо состоит из перво-ночально однородной массы. В отличие от преформистов взгляды К- Ф. Вольфа и других сторонников эпигенеза для своего времени были прогрессивны, т. к. содержали мысль о развитии. Однако в дальнейшем появились новые моменты. В частности, в 1828 г. К. Бэр опубликовал свой труд «История развития животных», в котором показал, что содержимое яйца не однородно, т. е. структурировано, причем степень структурированности возрастает по мере развития зародыша. Таким образом, К. Бэр показал несостоятельность как преформизма, так и эпигенеза.

В наше время рост организма понимают в качестве постепенного увеличения его массы в результате увеличения количества клеток. Рост можно измерить, построив на основе результатов измерений кривые размеров организма, массы, сухой массы, количества клеток, содержания азота и других показателей. Что же касается дифференциации клеток, то это процесс, благодаря которому одни клетки становятся морфологически, биохимически и функционально отличными от других клеток. Размножение и дифференцировка одних клеток всегда координированы с ростом и дифференцировкой других. Оба эти процесса происходят на протяжении всего жизненного цикла организма. Поскольку дифференцирующиеся клетки изменяют свою форму, а в изменения формы вовлекаются группы клеток, то это сопровождается мор-фогенезом, представляющим собой совокупность процессов, определяющих структурную организацию клеток и тканей, а также общую морфологию организмов. Таким образом, рост является результатом количественных изменений в виде увеличения количества клеток (массы тела) и качественных — в виде дифференци-ровки клеток и морфогенеза.

Понятия о росте организмов (размножении клеток), дифферен-цировке клеток и о морфогенезе позволяют сформулировать заключение о развитии как основополагающей особенности онтогенеза.

Развитие — это качественные изменения организмов, которые определяются дифференцировкой клеток и морфогенезом, а также биохимическими изменениями в клетках и тканях, обеспечивающими в ходе онтогенеза прогрессивные изменения индивидов. В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Процесс развития детерминирован генетически и теснейшим образом связан со средой. Следовательно, развитие определяется единством внутренних и внешних факторов. Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой, в связи с чем различают прямое и непрямое развитие.

Прямое развитие организмов в природе встречается в виде неличиночного и внутриутробного развития, тогда как непрямое развитие наблюдается в форме личиночного развития.

Под личиночным развитием понимают непрямое развитие, поскольку организмы в своем развитии имеют одну или несколько личиночных стадий. Личиночное развитие широко распространено в природе и характерно для насекомых, иглокожих, амфибий. Личинки этих животных ведут самостоятельный образ жизни, подвергаясь затем превращениям. Поэтому это развитие называют еще развитием с метаморфозами (см. ниже).

Неличиночное развитие характерно для организмов, развивающихся прямым образом, например для рыб, пресмыкающихся и птиц, яйца которых богаты желтком (питательным материалом). Благодаря этому в яйцах, откладываемых во внешнюю среду, проходит значительная часть онтогенеза, метаболизм зародышей обеспечивается развивающимися провизорными органами, представляющими собой зародышевые оболочки (желточный мешок, амнион, аллантоис).

Внутриутробное развитие также характерно для организмов, развивающихся прямым путем, например для млекопитающих, включая человека. Поскольку яйцеклетки этих организмов очень бедны питательными веществами, то все жизненные функции зародышей обеспечиваются материнским организмом посредством образованных из тканей матери и зародыша провизорных органов, среди которых главным является плацента. Эволюционно внутриутробное развитие является самой поздней формой, однако оно наиболее выгодно для зародышей, т. к. наиболее эффективно обеспечивает их выживание.

Онтогенез подразделяют на проэмбриональный, эмбриональный и постэмбриональный периоды. В случае человека, а иногда и высших животных, период развития до рождения часто называют пре-натальным или антенатальным, после рождения — постнатальным. В пределах пренатального периода выделяют начальный (первая неделя развития), зародышевый и плодный периоды. Развивающийся зародыш до образования зачатков органов называют эмбрионом, после образования зачатков органов — плодом.

§ 34 Промбриональный и эмбриональный

периоды

Проэмбриональный (от греч. pro — до, embryon — зародыш) период в индивидуальном развитии организмов связан с образованием половых клеток в процессе гаметогенеза. Как отмечено выше, мужские половые клетки животных по своей структуре не имеют существенных отличий от других (соматических) клеток, тогда как яйцеклетки характеризуются важной отличительной чертой, заключающейся в том, что они содержат очень много желтка. Учитывая количество желтка и топографию его в яйцеклетках, последние классифицируют на три типа, а именно:

1. Изолецитальные клетки. Эти яйцеклетки содержат немного желтка, который локализован равномерно по всей клетке. Изолецитальные яйцеклетки продуцируются иглокожими (морскими ежами), низшими хордовыми (ланцетниками), млекопитающими.

2. Телолецитальные яйцеклетки. Эти яйцеклетки содержат большое количество желтка, который сосредоточен на одном из полюсов — вегетативном. Такие яйцеклетки продуцируются моллюсками, земноводными, рептилиями, птицами. Например, яйцеклетки лягушки состоят из желтка на 50%, яйцеклетки кур (в обиходе куриные яйца) — на 95% . На другом полюсе (анимальном) телоле-ЦИтальных яйцеклеток сосредоточены цитоплазма и ядро.

3. Центролецитальные яйцеклетки. В этих яйцеклетках желтка немного, но он занимает центральное положение. Периферию таких яйцеклеток занимает цитоплазма. Примером центролециталь-ных яйцеклеток являются яйцеклетки, продуцируемые членистоногими.

Для проэмбрионального периода характерно также то, что в этот период в гаметах происходят метаболические процессы, связанные с накоплением интенсивно синтезируемых молекул РНК.

Эмбриональный период или эмбриогенез (от греч. embryon — за-родыш, genesis — развитие), начинается со слияния ядер мужской и Женской половых клеток, который представляет собой процесс оплодотворения яйцеклеток. У организмов, для которых характерно внутриутробное развитие, эмбриональный период заканчивается рождением потомства, а у организмов, для которых характерны личиночный и неличиночный типы развития, эмбриональный период завершается выходом потомства из яйцевых или зародышевых оболочек соответственно.

В пределах эмбрионального периода различают стадии зиготы, дробления, бластулы, гаструлы, образования зародышевых листков, гистогенез и органогенез. Как отмечено выше, с учетом фактора времени у млекопитающих и человека зародыш до момента формирования зачатков органов называют эмбрионом, а после этого вплоть до рождения называют плодом. У человека развитие эмбриона (зародыша) заканчивается к концу второго месяца. Начиная с 9-й недели, следует плодный период, характеризующийся дальнейшим ростом и развитием организма (плода) во внутриутробном состоянии вплоть до рождения.

Зигота . У млекопитающих зигота образуется в результате оплодотворения, начинающегося с того, что одна из мужских половых клеток достигает яйцеклетки и инициирует ее развитие. В активированной мужской половой клеткой яйцеклетке происходит ряд физических и химических процессов, включая перемещение протоплазмы, что ведет к установлению билатеральной симметрии яйцеклетки, а также перестройку плазматической мембраны, что исключает слияние с яйцеклеткой других (дополнительных) мужских половых клеток. Затем следует слияние плазматических мембран яйцеклетки и спермия с последующим разрушением ядерных мембран, что обеспечивает слияние ядер двух клеток. Ядра клеток сливаются, при этом восстанавливается диплоидный набор хромосом. Оплодотворение яйцеклетки сопровождается активированием в ней синтеза белков. Таким образом, образуется по существу одноклеточный организм.

Дробление . Образование морулы. Дробление представляет собой начальный период развития зиготы (оплодотворенного яйца). Поскольку яйцеклетки обладают центриолями, то оно заключается в делении зиготы путем митоза, которое начинается, например у человека, через 30 часов после осеменения. У человека деление начинается с движения оплодотворенной яйцеклетки по фаллопиевой трубе и заключается в появлении на поверхности яйцеклетки борозды. Первая борозда приводит к образованию двух клеток — двух бластомеров, вторая — четырех бластомеров, третья — восьми бластомеров и т. д. (рис. 88). Группа клеток, образовавшаяся в результате последовательных дроблений зиготы, получила название морулы (от греч. morum — тутовая ягода).

Стадию морулы проходят все многоклеточные животные, размножающиеся половым путем. В зависимости от видовой принадлежности деление идет по-разному. Различают радиальное (позвоночные, иглокожие), билатеральное (грибневики, некоторые хордовые) и спиральное дробление (немертины, кольчатые черви, многие моллюски), причем эти формы дробления зависят от плоскостей дробления. Поэтому их морулы состоят из разного количества клеток. Кроме того, из части клеток образуется структура, называемая трофобластом, клетки которого питают зародыш, а благодаря ферментам обеспечивают также внедрение последнего в стенку матки. У человека прикрепление морулы к стенке матки происходит на 7-й день после оплодотворения. Позднее клетки трофобласта отслаиваются от зародыша и образуют пузырек, который заполняется жидкостью тканей матки.

Характерная особенность дробления заключается в том, что при нем значительного роста клеток не происходит. Поэтому биологическое значение этой стадии заключается в том, что из крупной клетки, которой является яйцеклетка, образуются более мелкие клетки, в которых уменьшено отношение цитоплазмы к ядру. В результате этого происходит изменение топологии цитоплазматических комплексов в бластомерах, что создает новое цитоплазматическое окружение для ядер.

Дробление зиготы завершается образованием многоклеточной структуры, получившей название бластулы (от греч. blastos — росток). Эта структура имеет форму пузырька, состоящего из одного слоя клеток, называемого бластодермой. Теперь эти клетки называют эмбриональными. По размерам бластула сходна с яйцеклеткой. В период дробления увеличивается количество ядер, возрастает общее количество ДНК. В конце стадии бластулы синтезируется также небольшое количество мРНК и тРНК, но новые рибосомы и рибосомная РНК до начала гаструляции еще не обнаруживаются, либо если обнаруживаются, то в ничтожных количествах.

Гаструляция. Гаструляция (от греч. gastre — полость сосуда) — это следующий за образованием бластулы процесс движения эмбриональных клеток, который сопровождается формированием двух или трех (в зависимости от вида животных) слоев зародыша или так называемых зародышевых листков (рис. 89).

Гаструляция характеризуется увеличением интенсивности обмена по сравнению с дроблением в 2-3 раза. Резко возрастает синтез мРНК, рРНК, рибосом и белков.

Развитие (гаструляция) изолецитальных яиц происходит путем инвагинации (впячивания) вегетативного полюса внутрь бластулы, в результате чего противоположные полюса почти сливаются, а бла-стоцель (полость бластулы) почти исчезает либо полностью исчезает. Внешний слой клеток зародыша получил название эктодермы (от греч. ectos — снаружи, derma — кожа) или наружного зародышевого листка, тогда как внутренний — энтодермы (от греч. entos — внутри) или внутреннего зародышевого листка. Образующаяся при этом полость получила название гастроцели, или первичной кишки, вход в которую называют бластопором (первичным ртом).

Развитие двух зародышевых листков характерно для губок и кишечнополостных. Однако для хордовых в период гаструляции характерно развитие третьего зародышевого листка — мезодермы (от греч. mesos — средний), образующегося между эктодермой и энтодермой (рис. 90).

Гаструляция является необходимым пререквизитом для последующих стадий развития, поскольку она приводит клетки в положение, открывающее возможность формировать органы. Дифференцированный на три эмбриональных закладки зародышевый материал дает начало всем тканям и органам развивающегося зародыша.

§ 35 Гистогенез и органогенез

Развитие (дифференцировка) зародышевых листков в ходе эмбриогенеза сопровождается тем, что из них формируются различные ткани и органы. В частности, из эктодермы развиваются эпидермис кожи, ногти и волосы, сальные и потовые железы, нервная система (головной мозг, спинной мозг, ганглии, нервы), рецептор-ные клетки органов чувств, хрусталик глаза, эпителий рта, носовой полости и анального отверстия, зубная эмаль. Из энтодермы развиваются эпителий пищевода, желудка, кишек, желчного пузыря, трахеи, бронхов, легких, мочеиспускательного канала, а также печень, поджелудочная железа, щитовидная, паращитовидная и зобная железы. Из мезодермы развиваются гладкая мускулатура, скелетные и сердечные мышцы, дерма, соединительная ткань, кости и хрящи, дентин зубов, кровь и кровеносные сосуды, брыжейка, почки, семенники и яичники. У человека первыми обособляются головной и спинной мозг. Через 26 дней после овуляции длина человеческого зародыша составляет около 3,5 мм. При этом уже видны зачатки рук, но зачатки ног только вступают в развитие. Через 30 дней после овуляции длина зародыша равна уже 7,5 мм. В это время уже можно различить сегментацию зачатков конечностей, глазные бокалы, полушария головного мозга, печень, Желчный пузырь и даже разделение сердца на камеры.

У восьминедельного зародыша человека при длине его около 40 мм и весе около 5 г появляются почти все структуры тела. Органогенез заканчивается к концу эмбрионального периода. В это время эмбрион по внешнему виду приобретает черты сходства с человеком.

Длина 12 недельного человеческого плода составляет уже около 87 мм, а масса около 45 г. Продолжается дальнейший рост и развитие плода. Например, на 4-м месяце развития появляются волосы, а на 20-й неделе начинают образовываться клетки крови.

Если дефинитивное ротовое отверстие образуется на месте первичного рта (бластопора), то этих животных называют первичноро-тыми (черви, моллюски, членистоногие). Если же дефинитивный рот образуется в противоположном месте, то этих животных называют вторичноротыми (иглокожие, хордовые).

Для обеспечения связи зародыша со средой у него развиваются так называемые провизорные органы, которые существуют временно. В зависимости от типа яйцеклеток провизорными органами являются разные структуры. У рыб, рептилий и птиц провизорным органом является желточный мешок. У млекопитающих желточный мешок закладывается в начале эмбриогенеза, но не развивается. Позднее он редуцируется. В ходе эволюции у рептилий, птиц и млекопитающих развились зародышевые оболочки, обеспечивающие защиту и питание эмбрионов (рис. 91). У млекопитающих, в т. ч. у человека, эти зародышевые оболочки являются листками ткани, развивающимися из тела эмбриона. Существуют три такие оболочки — амнион, хорион и аллантоис. Наружная оболочка эмбриона называется хорионом. Она врастает в матку. Место наибольшего врастания в матку называется плацентой. Зародыш с плацентой связан через пуповину или пупочный канатик, в котором имеются кровеносные сосуды, обеспечивающие плацентарное кровообращение. Амнион развивается из внутреннего листка, а аллантоис развивается между амнионом и хорионом. В пространстве между эмбрионом и амнионом, которое называется амниоти-ческой полостью, содержится жидкость (амниотическая). В этой жидкости находится эмбрион, а затем и плод до самого рождения. Метаболизм плода обеспечивается через плаценту.

В основе формообразующего взаимодействия частей эмбриона лежат определенным образом скоординированные процессы обмена веществ. Закономерностью развития является гетерохронность, под которой понимают разное во времени образование закладок органов и разную интенсивность их развития. Быстрее развиваются те органы и системы, которые должны раньше начать функционировать. Например, у человека зачатки верхних конечностей развиваются быстрее, чем зачатки нижних.

Большое влияние на развитие зародыша и плода оказывают условия жизни матери. Зародыш чрезвычайно чувствителен к разным воздействиям. Поэтому различают так называемые критические периоды, т. е. периоды, в которых зародыши, а потом и плоды наиболее чувствительны к повреждающим факторам. В случае человека критическими периодами эмбрионального онтогенеза являются первые дни после оплодотворения, время образования плаценты и роды, а повреждающими факторами являются алкоголь, токсические вещества, недостаток кислорода, вирусы, бактерии, патогенные простейшие, гельминты и другие факторы. Эти факторы обладают терратогенным действием и ведут к уродствам, нарушениям нормального развития.

Еще со времен Гиппократа (V в. д. н. э.) обсуждается вопрос о причинах, которые инициируют рождение плода. В частности, сам Гиппократ предполагал, что развитие плода инициирует собственное рождение. Новейшие экспериментальные работы английских исследователей, выполненные на овцах, показали, что у овец инициация окотов контролируется комплексом гипоталамус + гипофиз + надпочечники плодов. Повреждения ядер гипоталамуса, удаление передней доли гипофиза или надпочечников пролонгирует беременности овец. Напротив, введение овцам аденокортикотроп-ного гормона (секрета передней доли гипофиза) или кортизола (секрета надпочечников) сокращает сроки их беременностей.

Довольно частым нарушением развития является разделение зародыша на очень ранней стадии развития, что сопровождается развитием однояйцевых (моно-зиготных) близнецов (рис. 92). Известны также и так называемые сиамские близнецы, представляющие собой неразделенные организмы. Неразделенность встречается разной — от незначительного соединения до почти полного слияния двух организмов с разделенными головами или ногами. Иногда из двух сиамских близнецов один нормален, но другой чрезвычайно изменен, будучи прикрепленным к нормальному, являясь, по существу, паразитом.

Итак, в процессе развития высших эукариотов одиночная оплодотворенная клетка-зигота в ходе дальнейшего развития в результате митоза дает начало клеткам разных типов — эпителиальным, нервным, костным, клеткам крови и другим, которые характеризуются разнообразием морфологии и макромолекулярного состава. Однако для клеток разных типов характерно и то, что они содержат одинаковые наборы генов, но являются высокоспециализированными, выполняя лишь одну или несколько специфических функций, т. е. одни гены «работают» в клетках, другие неактивны. Например, только эритроциты специфичны в синтезе и хранении гемоглобина.

Точно так лишь клетки эпидермиса синтезируют кератин. Поэтому давно возникли вопросы о генетической идентичности ядер соматических клеток и о контрольных механизмах развития оплодотворенных яйцеклеток как пререквизита в познании механизмов, лежащих в основе дифференцировки клеток.

Начиная с 50-х годов во многих лабораториях были выполнены эксперименты по успешной пересадке ядер соматических клеток в яйцеклетки, искусственно лишенные собственных ядер. Исследование ДНК из ядер разных дифференцированных клеток показало, что почти во всех случаях геномы содержат одинаковые наборы последовательностей нуклеотидных пар. Известны лишь исключения, когда эритроциты млекопитающих теряют свои ядра в течение последней стадии дифференцировки. Но к этому времени пулы стойких гемоглобиновых мРНК уже синтезированы, так что ядра больше не нужны эритроцитам. Другими примерами служат гены иммуноглобулинов и Т-клеток, модифицируемые в ходе развития.

Одним из крупных этапов в направлении познания контрольных механизмов эмбрионального онтогенеза стали результаты экспериментов, выполненных в 1960—70 гг. английским исследователем Д. Гёрдоном с целью выяснить, обладают ли ядра соматических клеток способностью обеспечивать дальнейшее развитие яйцеклеток, если эти ядра ввести в яйцеклетки, из которых предварительно удалены собственные ядра. На рис. 93 приведена схема одного из этих экспериментов, в котором ядра соматических клеток головастика пересаживали в яйцеклетки лягушки с предварительно удаленными ядрами. Эти эксперименты показали, что ядра соматических клеток действительно способны обеспечивать дальнейшее развитие яйцеклеток, т. к. они оказались способными оплодотворять яйцеклетки и «заставляли» их развиваться дальше. Этим была показана возможность клонирования животных.

Позднее другими исследователями были выполнены эксперименты, в которых было показано, что перенос отдельных бластомеров из 8- и 16-дневных эмбрионов овец одной породы в безъядерную половину яйцеклетки (после рассечения последней пополам) другой породы сопровождалось формированием жизнеспособных эмбрионов с последующим рождением ягнят.

В начале 1997 г. английскими авторами было показано, что введение в искусственно лишенные ядра яйцеклеток овец ядер соматических клеток (клеток эмбрионов, плодов и вымени взрослых овец), а затем имплантация оплодотворенных таким образом яйцеклеток в матку овец сопровождается возникновением беременности с последующим рождением ягнят.

Оценка этих результатов показывает, что млекопитающих можно размножать асексуальным путем, получая потомство животных, клетки которых содержат ядерный материал отцовского или материнского происхождения в зависимости от пола овцы-донора, в таких клетках лишь цитоплазма и митохондрии имеют материнское происхождение. Это заключение имеет чрезвычайно важное общебиологическое значение, расширяет наши взгляды на потенциал размножения животных. Но важно также добавить, что речь идет о генетических манипуляциях, которые в природе отсутствуют. С другой стороны, в практическом плане эти генетические манипуляции представляют собой прямой путь клонирования высокоорганизованных животных с заданными свойствами, что имеет важное экономическое значение (см. раздел VI). В медицинском плане этот путь, возможно, будет использован в будущем для преодоления мужского бесплодия.

Итак, генетическая информация, необходимая для нормального развития эмбриона, не теряется в течение дифференцировки клеток. Другими словами, соматические клетки обладают свойством, получившим название тотипотентности, т. е. в их геноме содержится вся информация, полученная ими от оплодотворенной яйцеклетки, давшей им начало в результате дифференциации. Наличие этих данных с несомненностью означает, что дифференциация клеток подвержена генетическому контролю.

Установлено, что интенсивный белковый синтез, следующий за оплодотворением, у большинства эукариотов не сопровождается синтезом мРНК. Изучение овогенеза у позвоночных, в частности У амфибий, показало, что интенсивная транскрипция происходит еще в течение профазы I (особенно диплотены) мейоза. Поэтому генные транскрипты в форме молекул мРНК или про-мРНК сохраняются в яйцеклетках в бездействующем состоянии. Установлено, что у эмбриональных клеток имеет место так называемое ассимет-ричное деление, заключающееся в том, что деление эмбриональной клетки дает начало двум клеткам, из которых лишь одна наследует белки, принимающие участие в транскрипции. Таким образом, неравное распределение транскрипционных факторов между дочерними клетками ведет к экспрессии в них разных наборов генов после деления, т. е. к дифференциации клеток.

У амфибий и, возможно, у большинства позвоночных, генетические программы, контролирующие раннее развитие (до стадии бластулы), устанавливается еще в течение овогенеза. Более поздние стадии развития, когда начинается клеточная дифференциация (примерно со стадии гаструлы) нуждаются в новых программах для экспрессии генов. Таким образом, дифференцировка клеток связана с перепрограммированием генетической информации в том или ином направлении.

Характерная особенность дифференцировки клеток заключается в том, что она необратимо ведет к тому или иному типу клеток. Этот процесс носит название детерминации и также находится под генетическим контролем, а как сейчас предполагают, дифференциация и детерминация клеток регулируется взаимодействием клеток на основе сигналов, осуществляемых пептидными ростовыми факторами через тирозинкиназные рецепторы. Вероятно, существует много таких систем. Одна из них заключается в том, что дифференциация мышечных и нервных клеток регулируется нейрорегу-линами, представляющими собой мембранные белки, действующие через один или более тирозинкиназных рецепторов.

Генетический контроль детерминации демонстрируется также существованием так называемых гомейотропных или гомеозисных мутаций, которые, как показано у насекомых, вызывают изменения при детерминации в специфических имагинальных дисках. В результате некоторые части тела развиваются не на своих местах. Например, у дрозофил мутации трансформируют детерминацию антенного диска в диск, который развивается в аппендикс конечности, протянутой от головы. У насекомых из рода Ophthalmoptera структуры крыльев могут развиваться из диска для глаз. У мышей показано существование генного кластера (комплекса) Нох, который состоит из 38 генов и контролирует развитие конечностей.

Самостоятельное значение имеет вопрос о регуляции активности генов в период эмбрионального развития. Считают, что в ходе дифференцировки гены действуют в разное время, что выражается в транскрипции в разных дифференцированных клетках разных мРНК, т. е. имеет место репрессия и дерепрессия генов. Например, количество генов, транскрибируемых в РНК в бластоцитах морского ежа, равно 10% , в клетках печени крыс — тоже 10% , а в клетках тимуса крупного рогатого скота — 15%. Предполагают, что в контроле транскрипционного статуса генов принимают участие негистоновые белки. В пользу этого предположения свидетельствуют следующие данные. Когда хроматин клеток в фазе транскрибируется в системе in vitro, то синтезируется только гистоновая мРНК, а вслед за нею и гистоны. Напротив, когда используют хроматин клеток из О^-фазы, то никакой гистоновой мРНК не синтезируется. Когда же негистоновые белки удаляются из хроматина G1 -фазы и замещаются негис-тоновыми хромосомными белками, синтезированными в фазе S, то после транскрипции такого хроматина in vitro синтезируется гистоновая мРНК. Больше того, когда негистоновые белки происходят из G^-фазы клеток, а ДНК и гистоны из S-фазы клеток, никакой гистоновой мРНК не синтезируется. Эти результаты показывают, что содержащиеся в хроматине негистоновые белки определяют возможность транскрипции генов, кодирующих гистоны. Поэтому считают, что негистоновые хромосомные белки могут играть важную роль в регуляции и экспрессии генов у эукариот.

Имеющиеся данные позволяют считать, что в регуляции транскрипции у животных принимают участие белковые и стероидные гормоны. Белковый (инсулин) и стероидные (эстрогон и тестосте-рон) гормоны представляют собой две сигнальные системы, используемые в межклеточных коммуникациях. У высших животных гормоны синтезируются в специализированных секреторных клетках. Освобождаясь в кровяное русло, они поступают в ткани, поскольку молекулы белковых гормонов имеют относительно крупные размеры, то они не проникают в клетки. Поэтому их эффекты обеспечиваются белками-рецепторами, локализованными в мембранах клеток-мишеней, и внутриклеточными уровнями циклического АМФ (цАМФ). Напротив, стероидные гормоны являются малыми молекулами, вследствие чего легко проникают в клетки через мембраны. Оказавшись внутри клеток, они связываются со специфическими рецепторными белками, которые имеются в цитоплазме только клеток-мишеней. Как считают, комплексы гормон + белковый рецептор, концентрируясь в ядрах клеток-мишеней, активирует транскрипцию специфических генов через взаимодействие с определенными негистоновыми белками, которые связываются с промоторными районами специфических генов. Следовательно, связывание комплекса гормон + белок (белковый рецептор) с негистоновыми белками освобождает промоторные районы для движения РНК-полимеразы. Обобщая данные о генетическом контроле эмбрионального периода в онтогенезе организмов, можно заключить, что его ход контролируется дифференциальным включением и выключением действия генов в разных клетках (тканях) путем их дерепрессии и репрессии.

§ 36 Постэмбриональный период

После появления организма на свет начинается его постэмбриональное развитие (постнатальное для человека), которое у разных организмов протекает от нескольких дней до сотен лет в зависимости от их видовой принадлежности. Следовательно, продолжительность жизни — это видовой признак организмов, не зависящий от уровня их организации (см. ниже).

В постэмбриональном онтогенезе различают ювениальный и пу-бертатный периоды, а также период старости, заканчивающийся смертью.

Ювенильный период . Этот период (от лат. juvenilis — юный) определяется временем от рождения организма до полового созревания. У разных организмов он протекает по-разному и зависит от типа онтогенеза организмов. Для этого периода характерно либо прямое, либо непрямое развитие.

В случае организмов, для которых характерно прямое развитие (многие беспозвоночные, рыбы, пресмыкающиеся, птицы, млекопитающие, человек), вылупившиеся из яйцевых оболочек или новорожденные сходны со взрослыми формами, отличаясь от последних лишь меньшими размерами, а также недоразвитием отдельных органов и несовершенными пропорциями тела (рис. 94).

Характерной особенностью роста в ювенильный период организмов, подверженных прямому развитию, является то, что происходит увеличение количества и размеров клеток, изменяются пропорции тела. Рост человека в разные периоды его онтогенеза показан на рис. 95. Рост разных органов человека неравномерен. Например, рост головы заканчивается в детстве, ноги достигают пропорциональной величины примерно к 10 годам. Наружные половые органы очень быстро растут в возрасте 12—14 лет. Различают определенный и неопределенный рост. Определенный рост характерен для организмов, которые к определенному возрасту прекращают свой рост, например, насекомые, млекопитающие, человек. Неопределенный рост характерен для организмов, которые растут всю жизнь, например, моллюски, рыбы, земноводные, рептилии, многие виды растений.

В случае непрямого развития организмы претерпевают превращения, называемые метаморфозами (от лат. metamorphosis — превращение). Они представляют собой видоизменения организмов в процессе развития. Метаморфозы широко встречаются у кишечно-полостных (гидры, медузы, коралловые полипы), плоских червей (фасциолы), круглых червей (аскариды), моллюсков (устрицы, мидии, осьминоги), членистоногих (раки, речные крабы, омары, креветки, скорпионы, пауки, клещи, насекомые) и даже у некоторых хордовых (оболочечники и земноводные). При этом различают полные и неполные метаморфозы. Наиболее выразительные формы метаморфозов наблюдают у насекомых, которые подвергаются как неполным, так и полным метаморфозам.

Неполное превращение — это такое развитие, при котором из яйцевых оболочек выходит организм, строение которого сходно со строением взрослого организма, но размеры намного меньше. Такой организм называют личинкой. В процессе роста и развития размеры личинок увеличиваются, но имеющийся хитипизированный покров мешает дальнейшему увеличению размеров тела, что приводит к линьке, т. е. сбрасыванию хитинизированного покрова, под которым находится мягкая кутикула. Последняя расправляется, и это сопровождается увеличением размеров животного. После нескольких линек животное достигает зрелости. Неполное превращение характерно, например, в случае развития клопов (рис. 96).

Полное превращение — это такое развитие, при котором из яйцевых оболочек освобождается личинка, существенно отличающаяся по строению от взрослых особей. Например, у бабочек и многих насекомых личинками являются гусеницы. Гусеницы подвержены линьке, причем могут линять по нескольку раз, превращаясь затем в куколки. Из последних развиваются взрослые формы (имаго), которые не отличаются от исходных (рис. 97).

У позвоночных метаморфозы встречаются среди земноводных и костных рыб. Для личиночной стадии характерно наличие провизорных органов, которые либо повторяют признаки предков, либо имеют явно приспособительное значение. Например, для головастика, являющегося личиночной формой лягушки и повторяющего признаки исходной формы, характерны рыбообразная форма, наличие жаберного дыхания, одного круга кровообращения. Приспособительными признаками головастиков являются их присоски, длинный кишечник. Для личиночных форм характерно также и то, что по сравнению со взрослыми формами, они оказываются приспособленными к жизни в совершенно иных условиях, занимая другую экологическую нишу и другое место в цепи питания. Например, личинки лягушек имеют жаберное дыхание, тогда как взрослые формы — легочное. В отличие от взрослых форм, которые являются плотоядными существами, личинки лягушек питаются растительной пищей.

Последовательность событий в развитии организмов часто называют жизненными циклами, которые могут быть простыми и сложными. Наиболее простые циклы развития характерны, например, для млекопитающих, когда из оплодотворенной яйцеклетки развивается организм, который снова продуцирует яйцеклетки и т. д. Сложными биологическими циклами являются циклы у животных, для которых характерно развитие с метаморфозами. Знания о биологических циклах имеют практическое значение, особенно в случаях, когда организмы являются возбудителями или переносчиками возбудителей болезней животных и растений.

Развитие и дифференциация, связанные с метаморфозами, являются результатом естественного отбора, благодаря которому многие личиночные формы, например, гусеницы насекомых и головастики лягушек адаптированы к среде лучше, чем взрослые половозрелые формы.

Пубертатный период . Этот период называют еще зрелым, и он связан с половой зрелостью организмов. Развитие организмов в этот период достигает максимума.

На рост и развитие в постэмбриональный период большое влияние оказывают факторы среды. Для растений решающими факторами являются свет, влажность, температура, количество и качество питательных веществ в почве. Для животных первостепенное значение имеет полноценное кормление (наличие в корме белков, углеводов, липидов, минеральных солей, витаминов, микроэлементов). Важны также кислород, температура, свет (синтез витамина Д).

Рост и индивидуальное развитие животных организмов подвержены нейрогуморальной регуляции со стороны гуморальных и нервных механизмов регуляции. У растений обнаружены гормонопо-добные активные вещества, получившие название фитогормонов. Последние влияют на жизненно важные отправления растительных организмов.

В клетках животных в процессе жизнедеятельности синтезируются химически активные вещества, влияющие на процессы жизнедеятельности. Нервные клетки беспозвоночных и позвоночных вырабатывают вещества, получившие название нейросекретов. Железы эндокринной, или внутренней, секреции также выделяют вещества, которые получили название гормонов. Эндокринные железы, в частности, те, которые имеют отношение к росту и развитию, регулируются нейросекретами. У членистоногих регуляция роста и развития очень хорошо показана на примере влияния гормонов на линьку. Синтез личиночного секрета клетками регулируется гормонами, накапливающимися в мозге. В особой железе у ракообразных вырабатывается гормон, тормозящий линьку. Уровни этих гормонов определяют периодичность линек. У насекомых установлена гормональная регуляция созревания яиц, протекание диапаузы.

У позвоночных железами внутренней секреции являются гипофиз, эпифиз, щитовидная, паращитовидная, поджелудочная, надпочечники и половые железы, которые тесно связаны одна с другой (рис. 98). Гипофиз у позвоночных вырабатывает гонадотропный гормон, стимулирующий деятельность половых желез. У человека гормон гипофиза влияет на рост. При недостатке развивается карликовость, при избытке — гигантизм. Эпифиз продуцирует гормон, который влияет на

сезонные колебания в половой активности животных. Гормон щитовидной железы влияет на метаморфоз насекомых и земноводных. У млекопитающих недоразвитие щитовидной железы ведет к задержке роста, недоразвитию половых органов. У человека из-за дефекта щитовидной железы задерживается окостенение, рост (карликовость), не наступает полового созревания, останавливается психическое развитие (кретинизм). Надпочечники продуцируют гормоны, оказывающие влияние на метаболизм, рост и дифференци-ровку клеток. Половые железы продуцируют половые гормоны, которые определяют вторичные половые признаки. Удаление половых желез ведет к необратимым изменениям ряда признаков. Например, у кастрированных петухов прекращается рост гребня, теряется половой инстинкт. Кастрированный мужчина преобрета-ет внешнее сходство с женщиной (не растет борода и волосы на коже, отлагается жир на груди и в области таза, сохраняется тембр голоса и т. д.).

Фитогормонами растений являются ауксины, цитокинины и гиб-береллины. Они регулируют рост и деление клеток, образование новых корней, развитие цветков и другие свойства у растений.

На всех периодах онтогенеза организмы способны к восстановлению утраченных или поврежденных частей тела. Это свойство организмов носит название регенерации, которая бывает физиологической и репаративной.

Физиологическая регенерация — это замена утерянных частей тела в процессе жизнедеятельности организма. Регенерации этого типа очень распространены в животном мире. Например, у членистоногих она представлена линькой, которая связана с ростом. У рептилий регенерация выражается в замещении хвоста и чешуи, у птиц — перьев, когтей и шпор. У млекопитающих примером физиологической регенерации может быть ежегодное сбрасывание оленями рогов.

Репаративная регенерация — это восстановление части тела организма, отторгнутой насильственным путем. Регенерация этого типа возможна у многих животных, но ее проявления различны. Например, она часта у гидр и связана с размножением последних, поскольку из части регенерирует весь организм. У других организмов регенерации проявляются в виде способности отдельных органов к восстановлению после утраты ими какой-либо части. У человека достаточно высокой регенеративной способностью обладают эпителиальная, соединительная, мышечная и костная ткани.

Растения многих видов также способны к регенерации. Данные о регенерации имеют большое значение не только в биологии. Их широко используют в сельском хозяйстве, в медицине, в частности, в хирургии.

Старость как этап онтогенеза. Старость является предпоследним этапом онтогенеза животных, причем ее длительность определяется общей продолжительностью жизни, которая является видовым признаком и которая у разных животных является разной. Наиболее точно старость изучена у человека.

Известны самые различные определения старости человека. В частности, одно из наиболее популярных определений заключается в том, что старость есть накопление последовательных изменений, сопровождающих повышение возраста организма и увеличивающих вероятность его болезней или смерти. Науку о старости человека называют геронтологией (от греч. geron — старик, старец, logos — наука). Ее задачей является изучение закономерностей возрастного перехода между зрелостью и смертью.

Научные исследования в геронтологии распространяются на разные области, начиная с исследований изменения активности клеточных ферментов и заканчивая выяснением влияния психологических и социологических смягчений в стрессах среды на поведение старых людей.

В случае человека различают физиологическую старость, старость, связанную с календарным возрастом, и преждевременное старение, обусловленное социальными факторами и болезнями. В соответствии с рекомендациями ВОЗ пожилым возрастом человека следует считать возраст порядка 60-75 лет, а старым в 75 лет и более.

Старость человека характеризуется рядом внешних и внутренних признаков.

Среди внешних признаков старости наиболее заметными являются снижение плавности движений, изменение осанки, снижение эластичности кожи, массы тела, упругости и эластичности мышц, появление на лице и других участках тела морщин, выпадение зубов. Так, например, по обобщенным данным человек в возрасте 30 лет теряет 2 зуба (в результате выпадения), в 40 лет — 4 зуба, в 50 лет — 8 зубов, а в 60 лет — уже 11 зубов. Заметным изменениям подвергается первая сигнальная система (притупляется острота органов чувств). Например, максимальное расстояние, при котором здоровые люди различают те или иные одинаковые звуки, в 20-30 лет составляет 12 м, в 50 лет — 10 м, в 60 лет — 7 м, а в 70 лет — только 4 м. Заметно изменяется также вторая сигнальная система (изменяется речевая интонация, голос становится глухим).

Среди внутренних признаков в первую очередь следует назвать такие признаки, как обратное развитие (инволюция) органов. Отмечается уменьшение размеров печени и почек, уменьшается количество нефронов в почках (к 80-ти годам почти наполовину), что снижает функциональные возможности почек и отражается на водно-элекролитном обмене. Снижается эластичность кровеносных сосудов, уменьшается перфузия кровью тканей и органов, повышается периферическая сопротивляемость сосудов. В костях накапливаются неорганические соли, изменяются (обызвествляются) хрящи, снижается способность органов к регенерации. Происходят существенные изменения в клетках, замедляется деление и восстановление их функционального тонуса, уменьшается содержание воды, снижается активность клеточных ферментов, нарушается координированность между ассимиляцией и диссимиляцией. В головном мозге нарушается синтез белков, в результате чего образуются аномальные белки. Повышается вязкость клеточных мембран, нарушается синтез и утилизация половых гормонов, происходят изменения в структуре нейронов. Наступают структурные изменения белков соединительной ткани и изменения эластичности этой ткани. Ослабляются иммунологические реакции, увеличивается возможность аутоим-мунных реакций. Снижаются функции эндокринных систем, в частности, половых желез. Поведение других признаков в старости показано на рис. 99.

Стремления понять природу старения организма возникли давно. В Древней Греции Гиппократ считал, что старение связано с неумеренностью в пище, недостаточным пребыванием на свежем воздухе. Аристотель считал, что старение связано с расходом тепловой энергии организмом. Значение пищи как фактора старения отмечал также Гален. Но долгое время для объективного понимания этой проблемы не хватало научных данных. Лишь в XIX в. в изучении старения наметился некоторый прогресс, стали формулировать теории старения.

Одной из первых наиболее известных теорий старения организма человека является теория немецкого врача Х. Гуфеланда (1762-1836), который отмечал в долголетии значение трудовой деятельности. До нас дошло его высказывание о том, что ни один лентяй не дожил до преклонного возраста. Еще более известной является эндокринная теория старения, которая берет начало от опытов, выполненных еще в середине прошлого века Бертольдом (1849), который показал, что пересадка семенников от одних животных к другим сопровождается развитием вторичных половых признаков. Позднее французский физиолог Ш. Броун Секар (1818-1894) на основе результатов впрыскиваний себе экстрактов из семенников утверждал, что эти инъекции производят благотворное и омолаживающее действие. В начале XX в. уже сложилось убеждение в том, что наступление старости связано с угасанием деятельности желез внутренней секреции, в частности, половых желез. В 20-30-е гг. на основе этого убеждения в разных странах было проделано много операций по омолаживанию пожилых или старых людей. Например, Г. Штейнах в Австрии перевязывал у мужчин семенные канатики, что вело к прекращению внешней секреции половых желез и, якобы, к некоторому омоложению. С. А. Воронов во Франции пересаживал семенники от молодых животных к старым и от обезьян к мужчинам, а Тушнов в СССР омолаживал петухов, вводя им гистолизаты половых желез. Все эти операции приводили к некоторым эффектам, но лишь временным. После названных воздействий процессы старения продолжались, причем еще интенсивнее.

В начале нашего века возникла микробиологическая теория старения, творцом которой был И. И. Мечников, который различал физиологическую старость и патологическую. Он считал, что старость человека является патологической, т. е. преждевременной. Основу представлений И. И. Мечникова составляло учение об ортобиозе (Orthos — правильный, bios — жизнь), в соответствии с которым основной причиной старения является повреждение нервных клеток продуктами интоксикации, образующимися в результате гниения в толстом кишечнике. Развивая учение о нормальном образе жизни (соблюдение правил гигиены, регулярный труд, воздержание от вредных привычек), И. И. Мечников предлагал также способ подавления гнилостных бактерий кишечника путем употребления кисломолочных продуктов.

В 30-е гг. широкое распространение получила теория о роли центральной нервной системы в старении. Творцом этой теории является И. П. Павлов, который установил интегрирующую роль центральной нервной системы в нормальном функционировании организмов. Последователи И. П. Павлова в экспериментах на животных показали, что преждевременное старение вызывается нервными потрясениями и продолжительным нервным перенапряжением.

Заслуживает упоминания теория возрастных изменений соединительной ткани, сформулированная в те годы А. А. Богомольцем (1881—1946). Он считал, что физиологическую активность организма обеспечивает соединительная ткань (костная ткань, хрящи, сухожилия, связки и волокнистая соединительная ткань) и что изменения коллоидного состояния клеток, потеря их тургора и т. д. определяют возрастные изменения организмов. Современные данные указывают на значение накопления кальция в соединительной ткани, т. к. он способствует потере ее упругости, а также уплотнению сосудов.

Для современных подходов к познанию сущности и механизмов старения характерно широкое использование данных физико-химической биологии и, в частности, достижений молекулярной генетики. Наиболее распространенные современные представления о механизмах старения сводятся к тому, что в процессе жизни в клетках организма накапливаются соматические мутации, в результате которых происходит синтез дефектных белков или нере-парируемые сшивки ДНК с белком. Поскольку дефектные белки играют дезинтегрирующую роль в клеточном метаболизме, то это ведет к старению. В случае культивируемых фибробластов показано, что связанные со старыми клетками белки и мРНК подавляют синтез ДНК в молодых фибробластах.

Известна также гипотеза, в соответствии с которой старение является результатом изменения митохондриальных метаболитов с последующим нарушением функций ферментов.

У человека показано существование генов, определяющих сроки развития наследственных дегенеративных процессов, связанных со старением. Ряд исследователей считает, что причиной старения являются изменения в системе иммунологической защиты организма, в частности, аутоиммунные реакции на структуры организма, имеющие жизненное значение. Наконец, в объяснениях механизмов старения специалисты большое внимание уделяют повреждениям белков, связанным с образованием свободных радикалов. Наконец, иногда придают значение освобождающимся после распада лизосом гидролазам, которые разрушают клетки.

Однако исчерпывающей теории старения все же еще не создано, поскольку ясно, что ни одна из этих теорий самостоятельно объяснить механизмы старения не может.

Смерть. Смерть является завершающим этапом онтогенеза. Вопрос о смерти в биологии занимает особое место, ибо чувство смерти «... совершенно инстинктивно присуще человеческой природе и всегда составляло одну из величайших забот человека» (И. И. Мечников, 1913). Больше того, вопрос о смерти стоял и стоит в центре внимания всех философских и религиозных учений, хотя философия смерти в разные исторические времена представлялась по-разному. В античном мире Сократ и Платон доказывали бессмертие души, тогда как Аристотель отрицал платоновскую идею бессмертия души, верил в бессмертность человеческого духа, продолжающего жить после смерти человека.

Цицерон и Сенека также признавали будущую жизнь, но Марк Аврелий считал смерть естественным явлением, которое следует принимать безропотно. В прошлом веке И. Кант и И. Фихте (1762-1814) тоже верили в будущую жизнь, а А. Г. Гегель придерживался убеждений, по которым душа поглощается «абсолютным существом», хотя природа этого «существа» не раскрывалась.

В соответствии со всеми известными религиозными учениями земная жизнь человека продолжается и после его смерти, и человек должен неустанно готовиться к этой будущей смерти. Однако естествоиспытатели и философы, не признающие бессмертия, считали и считают, что смерть представляет собой, как неоднократно подчеркивал И. И. Мечников, естественный исход жизни организма. Более образное определение смерти заключается в том, что она «... есть явная победа бессмыслия над смыслом, хаоса над космосом» (В. Соловьев, 1894).

Научные данные свидетельствуют о том, что у одноклеточных организмов (растений и животных) следует отличать смерть от прекращения их существования. Смертью является их гибель, тогда как прекращение существования связано с их делением. Следовательно, недолговечность одноклеточных организмов компенсируется их размножением. У многоклеточных растений и животных смерть является в полном смысле слова завершением жизни организма.

У человека вероятность смерти повышается в пубертатный период. В частности, в развитых странах вероятность смерти повышается почти экспоненциально после 28 лет.

Различают клиническую и биологическую смерть человека. Клиническая смерть выражается в потере сознания, прекращении сердцебиения и дыхания, однако большинство клеток и органов все же остаются живыми. Происходит самообновление клеток, продолжается перистальтика кишечника.

Клиническая смерть не «доходит» до биологической смерти, ибо она обратима, т. к- из состояния клинической смерти можно «возвращать» к жизни. Например, собак «возвращают» к жизни через 5—6 минут, человека — через 6—7 минут от начала клинической смерти. Биологическая смерть характеризуется тем, что она необратима. Остановка сердцебиения и дыхания сопровождается прекращением процессов самообновления, гибелью и разложением клеток. Однако гибель клеток начинается не во всех органах одновременно. Вначале гибнет кора головного мозга, затем гибнут эпителиальные клетки кишечника, легких, печени, клетки мышц, сердца.

На представлениях о клинической смерти основаны мероприятия по реанимации (оживлению) организмов, что имеет исключительно важное значение в современной медицине.

Продолжительность жизни. Сравнение данных о продолжительности жизни разных представителей флоры и фауны показывают, что среди растений и животных разные .организмы живут разное время. Например, травянистые растения (дикие и культурные) живут в течение одного сезона. Напротив, древесные растения характеризуются большей продолжительностью жизни. Например, вишня живет 100 лет, ель — 1000 лет, дуб — 2000 лет, сосна — до 3000-4000 лет.

Ряд видов членистоногих живет 40-60 лет, рыбы многих видов, например, осетровые живут 55-80 лет, лягушки — 16 лет, крокодилы — 50-60 лет, дикие свиньи — 25 лет, змеи и ящерицы — 25—30 лет, птицы некоторых видов — до 100 лет и более. Продолжительность жизни млекопитающих является меньшей. Например, мелкий рогатый скот живет — 20-25 лет, крупный рогатый скот — 30 лет и более, лошади — 30 лет, собаки — 20 лет и более, волки — 15 лет, медведи — 50 лет, слоны — 100 лет, кролики — 10 лет.

Среди млекопитающих долгожителем является человек. Еще в Библии отмечено, что Мафусаил дожил до 969 лет, а гомеровский герой Нестор прожил три человеческих века, Дандо и один из лак-мейских королей — более 500 лет.

Конечно, эти данные неточны. В действительности же многие люди доживали до 115—120 лет и более. Достоверны случаи, когда отдельные люди доживали даже до 150 лет. В то же время долгожители часто сохраняют на высоком уровне как физические, так и умственные способности. Например, Платон, Микеланджело, Тициан, И. Гёте и В. Гюго лучшие свои произведения создали после 75 лет.

Отмечено, что долгожительство характерно не только для европеоидов. Еще старые авторы отмечали, что отдельные негры жили 115-160 и более лет.

Еще в XVIII в. швейцарский физиолог А. Галлер (1708-1777) отмечал, что столетний возраст имеет семейное распространение, т. е. долговечность представляет собой наследственный признак. Современные данные не опровергают это заключение.

В случае человека различают естественную продолжительность ясизни и среднюю продолжительность жизни. Под естественной продолжительностью жизни понимают количество лет, дальше которых человек не может жить, если даже условия его существования являются самыми благоприятными. Напротив, средняя продолжительность жизни представляет собой длительность жизни индивидов определенной группы, прерываемая смертностью.

В соответствии с существующими представлениями естественная продолжительность жизни является видовым количественным признаком, подверженным контролю со стороны генотипа.

Считают, что такой контроль осуществляется в каждом периоде онтогенеза, причем первые доказательства в пользу этого заключения были получены еще в 60-е годы в экспериментах по культивированию фибробластов человека (табл. 8).

Как видно из табл. 8, выделенные из эмбрионов фибробласты способны к 50-кратному делению, после чего они погибают. Это соответствует примерно 150-летней естественной продолжительности жизни человека. Напротив, фибробласты, выделенные из тканей взрослых людей, способны к значительно меньшему числу генераций. Определенная продолжительность жизни характерна и для тканевого уровня.

Предполагают, что естественная продолжительность жизни является эволюционным приобретением вида. Что касается долгожи-тельства отдельных индивидуумов, то объяснение таких случаев обычно сводится к допущению либо наличия в генотипах долгожителей сочетаний определенных генов, либо наличия небольшого количества или полного отсутствия мутаций в их клетках.

Естественную продолжительность жизни определяют путем установления длительности периода роста человека и длительности жизни. Считают, что человек растет примерно 20 лет, но живет, как показывают долгожители, в 5-7 раз дольше. Руководствуясь этими соображениями, швейцарский физиолог Галлер еще в XVIII в. допускал, что человек может жить до 200 лет. И. И. Мечников тоже считал, что человек может жить до 150 лет, А. А. Бо-гомолец и И. И. Шмальгаузен подсчитали, что естественная продолжительность жизни человека должна составлять 120-150 лет. Однако до 100-летнего возраста доживают лишь отдельные индивиды. Поэтому фактическая средняя продолжительность жизни вопреки ее росту не совпадает с естественной продолжительностью жизни.

На повышение средней продолжительности жизни оказывает влияние ряд факторов (частота рождаемости, снижение детской смертности, эффективность борьбы с инфекциями, успехи хирургии, улучшение питания и общих условий жизни, снижение смертности в результате несчастных случаев), причем эти факторы оказываются более эффективными в случае молодого возраста членов той или иной популяции. Однако при этом естественная продолжительность жизни не увеличивается.

Таблица 8

Зависимость удвоения фибробластов при культивировании

от возраста донора

Возраст донора фибробластов (в годах)

Количество удвоения

Эмбрион

50 -10

0-20

30 = 10

20

20 = 10

Главнейшие причины снижения средней продолжительности жизни заключаются в детской смертности, а также смертности от голода, болезней, недостаточной медицинской помощи.

Частота смертных случаев обвально снижается в период после рождения и до достижения пубертанного возраста, а затем она повышается (рис. 100). В развитых странах частота смертности повышается почти экспоненциально после возраста около 28 лет.

Средняя продолжительность жизни у древних греков и римлян составляла примерно 30 лет. Средняя продолжительность жизни в Европе составляла в XVI в. — 21 год, в XVII в. — 26 лет, в XVIII в. — 34 года. В конце XIX в. она начала медленно возрастать. В 1988 г. в среднем по всему миру она составляла 61 год, причем в индустриально развитых странах она составляла 73, а в Африке лишь 52 года. Но известны исключения, когда продолжительность жизни растет чрезвычайно быстро, достигая очень высокого уровня, как это имело место в Швеции и Японии (рис. 101, 102).

Частоты рождаемости, смертности и время удвоения количества населения являются разными для разных стран (табл. 9).

В медицинском плане средняя продолжительность жизни — это показатель здоровья нации. СССР по числу старых людей занимал первое место в мире. Например, на 1 млн жителей приходилось 104 человека в возрасте свыше 90 лет, тогда как в Англии — 6, Франции — 7 и США — 15 человек.

Таблица 9

Некоторые популяционные характеристики народонаселения

отдельных стран в 1971 г. (по данным ООН)

Страна

Количество населения (в млн)

Частота рождаемости (на 1000)

Частота смертности (на 1000)

Время, необходимое для удвоения количества населения (в годах)

США

207

18,2

9,3

58

Дания

5

14,6

9,8

88

Швеция

8,1

13,5

10,4

88

Колумбия

22,1

44

11

21

Эквадор

6,3

45

11

21

Кения

11,2

50

20

23

Уганда

8,8

43

18

27

Нигерия

56,5

50

25

27

Индия

570

42

17

27

Пакистан

142

50

18

21

Индонезия

125

47

19

24

В связи с изменениями в продолжительности жизни в настоящее время отмечаются изменения границ трудоспособного населения по сравнению, например, с 30-ми годами нашего столетия. Во многих странах мира отмечается также разрыв между пенсионным возрастом и активностью людей, в результате чего во многих странах мира люди пенсионного возраста продолжают трудиться в той или иной форме. Особенно это распространено в нашей стране.

В 1982 г. в Вене состоялась Всемирная ассамблея по проблемам населения мира, на которой были сформулированы прогнозы по демографической проблематике до 2025 г. В соответствии с этими прогнозами предполагается, что в мире численность людей в возрасте 60 лет и старше по сравнению с 1950 г. возрастет в 5 раз, а людей старше 80 лет — в 7 раз. Другими словами, по данным этого международного форума население Земли постепенно стареет, причем скорость старения населения применительно к разным народам, странам и регионам является различной. Закономерностью является то, что чем ниже жизненный уровень населения, тем быстрее оно стареет.

Гериатрия — это одна из медицинских наук, задачей которой является разработка способов нормализации изменяющихся функций стареющего организма. Начала гериатрии уходят в далекое прошлое, ибо еще Гиппократ в древней Греции придавал большое значение умеренности в пище, приему воздушных и водных ванн. Вслед за ним многие знаменитые врачи прошлого (Гален, Абу Али ибн Сина и другие) также уделяли внимание гериатрии. В наше время проблемы гериатрии разрабатываются во многих научно-исследовательских учреждениях мира.

Однако вопреки успехам в познании биологических основ старения современная гериатрия еще не располагает методами и средствами воздействия на угасающие с возрастом нормальные физиологические процессы. Поэтому роль гериатрии ограничивается лечением возникающих в пожилом и старческом возрасте заболеваний и исключением (при наличии возможностей) факторов риска, вызывающих преждевременное старение.

§ 37 Онтогенез растений

Поскольку растения чрезвычайно разнообразны, то для них характерны специфические онтогенезы. Можно сказать, что содержание онтогенеза растений зависит от их таксономической принадлежности.

В случае одноклеточных организмов растительной природы (бактерий и других) онтогенез может быть определен жизнью клетки на протяжении времени от одного деления до другого. Деление бактериальной клетки на две дочерние клетки можно оценить в качестве завершающего этапа онтогенеза, т. е. ее смерти. Однако многие виды бактерий, например спорообразующих, могут сохраняться длительное время без размножения. Известно также, что циано-бактерии могут сохраняться жизнеспособными (без деления) в донных отложениях озер и прудов на протяжении нескольких десятков лет.

В случае многоклеточных растений, например у цветковых растений, онтогенез начинается с возникновения зародыша в семени и заканчивается смертью растения. У этих растений онтогенез состоит из ряда периодов, которые являются, по существу, возрастными. В частности, различают латентный (покоящиеся семена), дегенеративный, или виргинильный (время от прорастания семени до первого цветения), генеративный (время от первого цветения до последнего) и сепильный, или старческий (от потери способности к цветению до отмирания), периоды. В пределах этих периодов вычленяют далее ряд этапов, важнейшими из которых являются дифференциация соцветия и цветка (цветков), макро- и микроспорогенез, макро- и микрогаметогенез, оплодотворение (зи-гогенез), формирование плода и семени.

Важнейшим моментом на протяжении онтогенеза растений является морфогенез, который зависит от деления и дифференци-ровки неподвижных клеток и который обеспечивается активностью меристем, что ведет к росту растений в той или иной мере на протяжении всей жизни. Во время роста деление клеток происходит почти полностью в меристемах. Различают апикальные и латеральные меристемы. Апикальные меристемы обеспечивают рост растений в основном в длину (высоту), тогда как латеральные меристемы ответственны за толщину растений. Латеральной меристемой служит камбий, из клеток которого формируются проводящие ткани.

Не менее важным в онтогенезе является процесс органогенеза, т. е. образование и развитие корня, стебля, листьев и цветков. При этом нужно заметить, что видовая принадлежность растений определяет сроки и интенсивность заложения и развития тех или иных органов.

Например, у таких растений как ель, которая растет всю жизнь, образование репродуктивных органов и оплодотворение с последующим развитием зародыша осуществляется в течение года, тогда как у некоторых однолетних покрытосеменных растений, жизнь которых определяется одним сезоном, длительность этих процессов составляет лишь около месяца или несколько больше. Рост и деление клеток растений подвержены влиянию света, температуры, гравитации и других факторов.

Размеры, форма и расположение зародыша в семени являются разными у растений разной видовой принадлежности. То же можно сказать и о запасе питательных веществ в зародыше (жиров, углеводов, белков).

Зародыш в семени может находиться длительное время в состоянии покоя, что зависит от дегидратации семян.

Сохранение всхожести семян растений разных видов колеблется, в основном, от одного года до многих десятилетий. Например, семена тех цветов, которые широко известны под названием астр, сохраняют всхожесть один год, тогда как семена многих огородных культур — несколько лет. Известно, что найденные в египетских захоронениях семена злаковых растений сохранили жизнеспособность в течение нескольких тысячелетий.

Условия прорастания семян (освещенность, температура, влажность и др.) растений разной видовой принадлежности также существенно различны. Например, семена одних растений могут прорастать при температуре 0°С, тогда как семена других растений нуждаются в положительных температурах.

Рост и развитие растений подвержены регуляции со стороны фитогормонов (регуляторов роста растений), которые представляют собой сигнальные молекулы и которыми являются ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен. Перечисленные соединения либо синтезируются в клетках, либо транспортируются к клеткам-мишеням. Наибольший эффект этих соединений проявляется при их сочетанном действии. Например, ауксин, индолилуксусная кислота, стимулирует образование корней, но в сочетании с гиббереллином содействует росту корней в длину, а в сочетании с цитокинином — стимулирует закладку и рост боковых почек.

§38 Происхождение способов размножения

Предполагают, что наиболее древним является бесполое размножение, в частности, вегетативное размножение. Из последнего развилось размножение спорообразованием, несомненное преимущество которого заключается в том, что оно обеспечивает лучшие возможности для сохранения видов и особенно для расширения их ареалов (расселение).

Половое размножение является наиболее эффективным путем воспроизводства организмов, дающим возможность «перетасовки» и комбинирования генов. Предполагают, что оно развилось из бесполого, возникнув около 1 млрд лет назад, причем первые этапы в этом процессе были связаны с усложнением в развитии гамет. Примитивные гаметы характеризовались недостаточной морфологической дифференцировкой, в результате чего для многих организмов ведущей была изогамия (от греч. isos — равный, gamos — брак), когда половые клетки были подвижными изогаметами, еще не дифференцированными на мужские и женские формы. Изогамия встречается у ряда видов простейших.

В последующем получила развитие анизогамия (от греч. anisos — неравный, games — брак), характеризующаяся дифференцировкой гамет, различающихся между собой лишь по величине. Примером анизогамии является образование гамет также у ряда видов простейших. У этих организмов размеры гамет различны (макрогаметы и микрогаметы).

На более поздних этапах эволюции животных возникли резкие различия в подвижности, форме и размерах гамет, что особенно заметно в случае гамет млекопитающих. Следует добавить также, что у млекопитающих выработалась также способность продуцировать мужские гаметы в огромных количествах.

Биологическая роль полового размножения исключительно велика. Несомненно, что она имеет значительные преимущества по сравнении с вегетативным размножением и размножением споро-образованием. Еще К. А. Тимирязев (1843-1920) неоднократно обращал внимание на половое размножение как на выдающийся источник изменчивости организмов, поскольку в ходе мейоза имеет место рекомбинация генов, а при объединении гамет — образование новых сочетаний генов. Можно сказать, что в природе половое размножение является доминирующим по сравнению с другими формами размножения. У животных, размножающихся половым путем, репродуктивная способность сохраняется относительно долго. Так в случае человека способность к репродукции у женщин сохраняется в основном до 40-45 лет, а у мужчин — практически всю жизнь.

Поскольку для полового размножения требуются два родителя, то это вызывает определенные трудности во встрече партнеров. Однако в ходе эволюции у позвоночных в порядке компенсации выработался также ряд добавочных приспособлений, облегчающих перенос половых клеток самца в половые пути самки и создающих условия для развития оплодотворенной яйцеклетки. Эти приспособления в ходе эволюции развились из выделительной системы, что привело к формированию мочеполовой системы (см. раздел об эволюции половой и выделительной систем).

У многих организмов развилась независимая тенденция к прямому развитию и живорождению. Если прямое развитие отмечается уже у большинства безлегочных саламандр, у всех безногих и у значительной части бесхвостых амфибий, то живорождение у животных появляется, начиная с чешуйчатых рептилий. Появление живорождения обязано преимущественному выживанию на ранних этапах развития внутри материнского организма. Считают, что возникновение живорождения у позвоночных связано с экологическими условиями.

Например, у рептилий оно связано с адаптацией их к жизни в высоких широтах, у амфибий — с адаптацией к низким температурам, а у хрящевых рыб — с адаптацией к жизни в тропических широтах.

Диплоидное состояние сопровождается накоплением различных аллелей. Поэтому половое размножение имеет еще и то преимущество, что оно представляет организмам большую возможность изменчивости по сравнению с бесполым, а это имеет важнейшее значение в эволюции.

Явные репродуктивные преимущества имеет партеногенез, т. к. он продуцирует потомство лишь женского рода. Однако он редок. Для объяснения низкой частоты замещения партеногенезом полового размножения в естественных популяциях организмов используют две гипотезы. В соответствии с одной из гипотез (мутацион-но-аккумулятивной) пол является адаптивным приспособлением, поскольку он «очищает» геном от повторяющихся мутаций, тогда как по другой гипотезе (экологической) пол является адаптивным приспособлением в меняющихся условиях среды. Многие считают, что обе гипотезы справедливы.

У растений в связи с эволюционным развитием неподвижности в образе жизни возникла необходимость в выработке приспособлений, обеспечивающих объединение мужских и женских гамет. Эволюция водных растений привела к появлению подвижных мужских половых клеток. У семенных растений развились пыльца и пыльцевая трубка, а также семя, что способствовало исключительному распространению растений.

Половое размножение растений играет важную роль в их распространении .

Вопросы для обсуждения

1. Опишите бесполое размножение и назовите его формы.

2. Что вы понимаете под половым размножением организмов и какова его биологическая роль?

3. Опишите особенности полового процесса у одноклеточных и многоклеточных организмов.

4. Что такое гаметогенез?

б. Какова функция гамет каждого типа?

6. Какие вы знаете стадии в развитии гамет?

7. В чем заключаются сходства и различия между сперматогенезом и овогенезом?

8. Что такое мейоз и каково его биологическое значение?

9. Опишите фазы мейоза.

10. Влияет ли кроссинговер на результаты мейоза и как?

11. Опишите сущность оплодотворения.

12. В чем заключается разница между зигогенезом и партеногенезом?

13. Какова биологическая роль чередования поколений?

14. Что представляет собой половой диморфизм? Что вы понимаете под гермафродитизмом? Наблюдаются ли случаи гермафродитизма у человека и как часто?

16. Как вы представляете эволюцию способов размножения?

16. Что вы понимаете под ростом и развитием организмов? Какова связь между ростом и дифференциацией клеток?

17. В чем заключаются молекулярные основы дифференцировки клеток?

18. Сформулируйте понятие об онтогенезе и назовите периоды онтогенеза.

19. Каковы различия между прямым и непрямым развитием?

20. В чем заключается влияние оплодотворения на яйцеклетки?

21. На каком этапе реализации генетической информации осуществляется контроль действия генов?

22. Каким образом оплодотворенная яйцеклетка развивается в многоклеточную структуру?

23. Каким образом развивающиеся клетки и ткани становятся отличными одни от других в процессе развития?

24. Могут ли восстанавливаться утерянные или поврежденные части тела?

25. Какова связь в онтогенезе между старостью и продолжительностью жизни?

26. Сформулируйте и определите разницу между естественной (вероятной) и фактической продолжительностью жизни.

27. Какие вам известны теории старения организма?

28. Можно ли считать продолжительность жизни человека видовым призна-ком?

29. Какие факторы оказывают влияние на продолжительность жизни?

Литература

Гилберт С. Биология развития. М.: Мир. 1994. 235 стр.

Грин Н„ Стаут У., Тейлор Д. Биология. М.: Мир. 1996. 386 стр.

Нидон К., Летерман И., Шеффель П., Шайба Б. Растения и животные. М .: Мир . 1991. 260 стр .

Hunter R. Sex Determination, Differentiation and Intersexualiti in Placental Mammole. Cambridge University Press. 1955. 310 pp.

Раздел III

НАСЛЕДСТВЕННОСТЬ

и ИЗМЕНЧИВОСТЬ ОРГАНИЗМОВ

«...признание того,

что явление жизни невозможно

без наследственности, показывает,

что воспроизведение исторически созданных

форм жизни в ряду поколений составляет основу жизни,

обеспечивает прямую физическую связь

на протяжении всех ее этапов,

от первых организмов

до современных видов».

Н. П. ДУБИНИН,

1970

Наследственность и изменчивость — это важнейшие свойства живого, которые не только отличают живое от неживого, но и определяют совместно с размножением бесконечное продолжение жизни, ее непрерывность на всех уровнях организации живого. Теоретическое значение учения о наследственности и изменчивости для биологии невозможно переоценить. Однако данные о наследственности и изменчивости имеют также и выдающееся практическое значение. Они составляют научную основу селекции растений и животных. По образному определению Н. И. Вавилова «...селекция представляет собой эволюцию, направляемую волей человека». Данные о наследственности и изменчивости лежат в основе наших представлений о нормальной и патологической наследственности человека и животных. Наконец, генетическая инженерия, созданная в недрах молекулярной генетики, составляет основу биотехнологии, которая, по образному выражению А. А. Баева, вступила в триумвират с механической и физической технологиями, составляющими становой хребет промышленности.

Глава IX

НАСЛЕДСТВЕННОСТЬ, НЕПРЕРЫВНОСТЬ ЖИЗНИ И СРЕДА

Наследственность есть категория историческая. Ее ключевая роль в определении непрерывности жизни заключается в том, что она обеспечивает физическую связь между поколениями клеток или организма в виде передачи генетической информации от родителей к их потомству. Но организмы живут в условиях определенной среды. Поэтому непрерывная передача генетической информации от родителей к потомству обеспечивает единство организмов и среды.

§ 39 Наследственность и непрерывность жизни

Из всех органических молекул способностью к саморепродукции обладают только нуклеиновые кислоты. Между тем, находясь в клетках, они контролируют их структуру и свойства (активность). Поэтому уникальность жизни в генетическом смысле заключается в том, что нуклеиновые кислоты через половые клетки обеспечивают химическую связь между поколениями. Благодаря размножению, наследственности и изменчивости жизнь видов продолжается бесконечно долго как непрерывное чередование поколений с сохранением между ними химических связей.

Уникальность жизни определяется также и постоянством видов. В процессе размножения исходные организмы всегда продуцируют самих себя, т. е. «подобное рождает подобное». Потомство пары мышей всегда является мышами, точно так же, как две бактериальные клетки являются бактериями того же вида, что и их родительская клетка. Следовательно, постоянство видов определяется передачей сходства от родителей к потомству, т. е. наследованием свойств своих родителей, вследствие чего организмы всех поколений (генераций) в пределах вида характеризуются общим наследственным (генетическим) поведением.

Наследственность — это передача сходства от родителей к потомству или склонность организмов походить на своих родителей. Наследственность означает передачу анатомических, физиологических и других, свойств и особенностей от организмов одних поколений (генераций) к организмам других. Поскольку связь между поколениями обеспечивается половыми клетками, а оплодотворение представляет собой слияние ядер этих клеток и образование зиготы, то ядра половых клеток составляют физическую основу такой связи. Когда речь идет о наследственности организмов, то следует понимать, что единственным материалом, который наследуется потомством от своих родителей, является генетический материал, сосредоточенный в ядерных структурах (хромосомах) и представляющий собой гены (единицы наследственности). Следовательно, потомство наследует от своих родителей не признаки (свойства), а гены, которые контролируют эти признаки (свойства), причем показателем генетической детерминируемости признаков является наследуемость последних.

Различают наследование, которое не связано с полом, и наследование, контролируемое, ограничиваемое и сцепленное с полом. Под наследованием, не связанным с полом, понимают то наследование, которое не зависит от пола организмов-родителей или потомства. При наследовании, контролируемом полом, проявление генов отмечают у обоих полов, но по-разному. Наследование, ограничиваемое полом, заключается в том, что проявление генов происходит лишь у одного пола. Наконец, наследование, сцепленное с полом, обусловлено локализацией соответствующих генов в половых хромосомах. Кроме этих типов наследования различают также полигенное наследование, когда наследуемость признака подвержена контролю со стороны нескольких генов.

Однако организмы, которые произошли от какой-то пары родителей, не все являются совершенно одинаковыми. В одном и том же помете мышей или в одной и той же культуре бактерий (происходящей от одной бактериальной клетки) можно встретить организмы, которые по каким-то признакам будут отличаться от родителей. Иногда у потомства обнаруживаются признаки, которые были присущи лишь далеким предкам, или признаки, которые являются совершенно новыми не только для их родителей, но и для их далеких предков. Следовательно, для индивидуальных организмов характерны различия, изменчивость признаков.

Противоположным свойством наследственности является изменчивость. Она заключается в изменениях генетического материала, сопровождаемых изменениями признаков организма. Результатом изменчивости является образование новых вариантов организмов, непрерывность разнообразия жизни.

§ 40 Наследственность, изменчивость и среда

Непрерывность жизни имеет генетический характер, ибо на-следсвенность и изменчивость поддерживают стабильность свойств и способность организмов к изменчивости. Однако генетическая непрерывность жизни связана не только с наследственностью и ее изменчивостью. Она связана также со средой, в которой живут и развиваются организмы.

Все организмы живут и размножаются в среде, условия которой не безразличны для них. До тех пор, пока организм живет, его наследственность взаимодействует со средой. Внешняя вреда влияет на выражение наследственных признаков и определяет степень их проявления. Взаимодействие наследственности и среды определяет, каким организм является в данный момент и как он должен развиваться в будущем. Можно сказать, что наследственность предполагает, каким организм должен стать, но не каким он будет. То, каким организм станет в действительности, решается взаимодействием наследственности и среды.

Геном — это сумма генов или полное количество ДНК, характерное для клеток организма определенного вида.

Генотип — это сумма генов данного организма, его индивидуальная генетическая конституция, которую он получает от своих родителей. Генотип относительно стоек не протяжении всей жизни индивидуума. Для взрослого человека, независимо от его возраста, характерен тот же генотип, который был присущ ему в период внутриутробного роста и развития, в детстве, отрочестве, юности.

Фенотип — сумма всех внешних и внутренних признаков (свойств) данного организма. У всех организмов различают качественные и количественные признаки. Качественными признаками служат те, которые можно, глядя на них, сфотографировать или описать, причем степень достоверности в описании зависит от умения описывающего. Так К. Линней настолько ярко описал качественные признаки домашней собаки, что эти описания уже два столетия переходят из одного учебника в другой без изменений. Такими признаками организмов являются половые различия, форма тела, строение, масть животного, окраска цветков и плодов, форма семян, плодов и т. д. Особенно разнообразны качественные признаки у человека. Они специфичны применительно к каждому индивидууму.

Количественными признаками служат те, которые можно определить путем измерений. Например, количественными признаками у растений являются масса семян, плодов, количество, форма и размеры листьев, высота стеблей, урожайность и т. д. У домашних животных количественными признаками являются молочная и мясная продуктивность, белковое содержание мяса, количество жира в молоке коров, яйценоскость кур, масса яиц, оплата корма и т. д. В растениеводстве и животноводстве учет количественных признаков имеет очень большое значение не только в хозяйственном плане, но и в том, что их используют в селекции высокоурожайных сортов растений и высокопродуктивных пород животных, ведя отбор на хозяйственно полезные признаки. Как правило, количественные признаки и у растений и у животных контролируются не одним, а большим количеством генов, действующих в одном направлении. У человека количественными признаками являются масса тела, головного мозга, масса и размеры внутренних органов, рост, количество форменных элементов крови, степень пигментации кожи, общая интеллектуальность и т. д. Как и в случае растений и животных количественные признаки человека тоже подлежат генетическому контролю, т. е. являются полигенами.

В противоположность генотипу фенотип любого организма изменяется в процессе роста и развития на протяжении всей его жизни. В случае человека изменения фенотипа у отдельного индиви-диума можно проследить по его фотографиям, сделанным в разные периоды жизни. Можно сказать, что фенотип организма является различным в онтогенезе индивидуума, т. е. в эмбриональном периоде, после рождения, во время полового созревания и т. д.

Генотип организма определяют путем наблюдения его действия (реализации генетической информации) и влияния на фенотип в условиях определенной среды. Когда два или несколько организмов растут и развиваются в одинаковых условиях, но фенотипы их различны, то это означает, что такие организмы имеют разные генотипы. Строго говоря, фенотипы являются результатом взаимодействия различных генов (компонентов генотипа) между собой и генотипа со средой. Поэтому нельзя думать, что организм или какие-либо признаки организма зависят исключительно только от генотипа или только от среды. Два одинаковых генотипа могут развиваться в разных условиях и дать разные фенотипы. Точно так же два разных генотипа могут развиваться в условиях одинаковой среды и дать разные фенотипы. Кроме того, если организмы, развивающиеся в условиях сходной или неодинаковой среды, имеют сходные фенотипы, это еще не означает, что их генотипы одинаковы. В таких случаях часто имеет значение доминантность признаков, которая может осложнять установление генотипа.

Фенотип организма с определенным генотипом формируется не только под влиянием факторов среды, действующих в данное время, но и тех факторов, которые действовали ранее на протяжении всей жизни организма. В случае человека любой индивидуум с его физическими, анатомическими, физиологическими и психическими свойствами является продуктом роста и развития, детерминируемого определенным генотипом и осуществляющегося в условиях среды с определенной последовательностью различных факторов этой среды, включая социальные. Другими словами, каждый индивидуум представляет собой продукт его генотипа и жизненного опыта. Например, японцы, проживающие в США, превосходят по росту японцев на их родине в Японии, причем это объясняют характером диеты. Однако в обоих случаях диапазон ростовых характеристик детерминируется генетически.

Наиболее демонстративно взаимодействие наследственности и внешней среды проявляется у однояйцевых (идентичных) близнецов. Многие наблюдения свидетельствуют о том, что жизнь и воспитание идентичных близнецов в различных семьях и в условиях разной среды всегда приводили к тому, что близнецы сохраняли фенотипическое сходство, но различались между собой как личности; пример, касающийся однояйцевых близнецов, свидетельствует о том, что наследственно задатки проявляются лишь в условиях определенной среды. В частности, на развитие умственных способностей человека, которые сами по себе детерминированы генетически, может оказывать влияние и среда.

Итак, хотя фенотип нельзя свести только к генотипу или среде, различия в фенотипе могут определяться раздельными или совместными различиями генотипа или среды, наследственность и среда постоянно взаимодействуют, определяя свойства организмов. Это, однако, не означает абсолютного влияния среды на проявление всех признаков. Известны отдельные признаки, развитие которых настолько сильно ограничено генотипом, что они не подвержены модификации ни одним из известных факторов среды. Можно сказать, что эти признаки генетически очень узко детерминированы к существующему разнообразию среды. Примерами таких признаков являются группы крови и цвет глаз у человека. Одновременно есть признаки, которые зависят от внешней среды, например, уродства новорожденных в результате приема ядов или алкоголя беременными женщинами, но такие признаки не имеют прямого отношения к наследственности.

В биологии большое значение имеют вопросы, касающиеся природы изменчивости организмов и отношения изменчивости к наследственности, ибо причины различий между индивидуальными организмами не всегда одинаковы и могут быть обусловлены как факторами среды, так и факторами наследственности (генами).

Нельзя никогда найти пару организмов одного вида, которые были бы совершенно одинаковы фенотипически. В лесу, степи или на возделываемой делянке даже рядом растущие растения различаются между собой, ибо они получают разное количество света, воды, минеральных веществ. Животные также различны между собой в пределах одного вида, т. к. никогда не получают точно одинакового количества корма в разное время. Следовательно, находясь в разных условиях по отношению к питательным веществам, свету, температуре и другим внешним факторам, организмы даже с одинаковым генотипом всегда различаются между собой феноти-пически. Такие различия между сходными по генотипу организмами получили название фенотипической (модификационной) изменчивости, модификации или ненаследственной изменчивости.

Однако различия между организмами могут определяться и другими причинами. При одних и тех же условиях щенок всегда вырастает в собаку, а котенок — в кошку, ибо организмы этих видов имеют принципиально различные генетические основы.

Известно, что рост мужчин в общем является большим, чем у женщин. Однако иногда женщины выше мужчин, а у высокорослых родителей рождаются дети меньшего роста. Эти различия связаны с тем, что данный наследственный признак детерминируется многими генами, экспрессия которых может меняться. Следовательно, в случае разных генотипов индивидуальные организмы одного и того же вида также могут различаться между собой по отдельным признакам. Поэтому изменчивость, детерминируемую наследственными факторами, называют генотипической или наследственной изменчивостью. Ее возникновение связано с изменениями (мутациями) генов и хромосом, а также рекомбинациями генов. По этой причине данную изменчивость называют еще мутационной, или рекомбинационной (комбинативной) изменчивостью (в зависимости от мутаций или рекомбинаций генов). Сочетания мутантных генов с немутантными или другими мутантными генами, а также рекомбинации генов и хромосомные мутации создают генотипическое разнообразие организмов (см. § 47).

Изучая мутационную изменчивость культурных злаковых растений и их диких предковых форм, Н. И. Вавилов (1887—1943) сформулировал закон гомологичных рядов наследственности, в соответствии с которым у этих организмов мутационный процесс протекает параллельно, а возникающие мутации характеризуются сходством, образуя гомологичные ряды. По Н. И. Вавилову гомологичные ряды наследственности являются отражением сходства генотипов организмов, входящих в эти ряды. В рамках закона гомологичных рядов наследственности изменчивость организмов представлена в виде закономерного явления, присущего видам организмов. Этот закон явился также основой в подборе исходных форм для скрещиваний с последующей селекцией полезных форм организмов.

Действие закона гомологичных рядов наследственности, который сформулирован в применении к растениям, распространяется на животных и человека, наиболее яркой иллюстрацией этого заключения является моделирование многих болезней человека (наследственных и не наследственных) на животных, т. к. многие болезни одинаково встречаются как у человека, так и у животных (антропозоонозы).

Принципиальное значение имеет определение степени раздельного влияния наследственности и среды на фенотипические различия индивидуальных организмов в пределах видов. Вопреки тому, что этот вопрос уже очень давно обсуждался в генетике, оценка этих влияний и до нашего времени остается сопряженной со многими трудностями и в каждом отдельном случае нуждается в специальном рассмотрении. Тем не менее практика сельского хозяйства и экспериментальные исследования с растениями и животными свидетельствуют о том, что такое определение в применении к растениям и животным вполне возможно.

Известно, что улучшение агротехники при культивировании растений или условий содержания при разведении домашних животных, генотипы которых характеризуются не очень благоприятными возможностями, приводит лишь к некоторому повышению урожая растений или продуктивности животных, причем не воспроизводимому в потомстве этих организмов. В то же время среди культивируемых растений всегда можно найти генотипические варианты, которые дают больший урожай, а среди животных — генотипические варианты, характеризующиеся большей продуктивностью по мясу, молоку, шерсти или какому-либо другому количественному признаку. Давно замечено, что даже незначительное генотипическое улучшение дает эффект, поскольку контролирующие его гены передаются по наследству, а генотипическое улучшение воспроизводится в потомстве. Более того, генотипическое совершенствование продуктивности культурных растений и домашних животных привело к созданию огромного сортового и породного разнообразия этих организмов. Разумеется, сортовые достоинства растений зависят от качества почвы, климатических условий, количества и качества удобрений и т. д., а породные достоинства животных — от условий их содержания и кормления. Таким образом, практика сельского хозяйства свидетельствует, что фенотипические различия между организмами определяются в основном генотипом. В то же время практический опыт свидетельствует, что наибольшие результаты в растениеводстве получают сочетанием высоких сортовых достоинств растений с удобрениями и различными агрономическими приемами. Это же имеет место и в животноводстве, где наибольшая продуктивность достигается при сочетании высоких породных достоинств животных с благоприятными условиями их кормления и содержания. Именно на основе знания этих особенностей непрерывно ведется селекционная работа по созданию новых высокоурожайных культур растений и высокопродуктивных пород животных. Высокие сортовые качества растений и породные качества животных в значительной мере компенсируют другие недостатки в хозяйственной деятельности (недостаток удобрений, кормов и т. д.), но их реализация полностью возможна лишь в условиях высокой агротехники или кормления и содержания (соответственно). Например, высокие урожаи основных продовольственных культур получают не только по причине сортовых достоинств растений, но и в результате внесения значительных количеств удобрений и достаточного орошения земель.

Более точные данные о степени влияния генотипа и среды на фенотипические различия дали многочисленные старые и новые экспериментальные исследования, выполненные в условиях контролируемой среды и использования организмов в виде клонов, чистых и инбредных линий со сходными генотипами или генотипами, различающимися между собой по определенным генам.

Клоном является потомство вегетативно размножающегося индивидуального организма, например, культура бактерий, полученная в результате размножения одноклеточной бактериальной клетки, культура соматических клеток, полученная из одиночных соматических клеток животного или человека, растения, полученные из одиночных клеток исходного растения (микроклональное размножение растений), группа деревьев или кустарников, развившихся из черенков, взятых от одного растения.

Чистая линия — это потомство, полученное от индивидуального организма в результате самоопыления (в случае растений) или самооплодотворения (в случае животных). Размножение многих культивируемых растений (пшеница, овес, фасоль, горох и т. д.) происходит главным образом путем самоопыления, поэтому здесь получение чистых линий не вызывает затруднений. У животных же самооплодотворение — это довольно редкое явление, но оно все же имеет место, например у пресноводных улиток.

Как и в случае клонов, все члены линии являются генетически однородными организмами, т. к. обладают одинаковыми наследственно-константными признаками. Их генетическое однообразие более совершенно, чем у потомства, получаемого после перекрестного опыления разных организмов.

Инбредные линии — это организмы, разводимые в мире раздельнополых животных путем неоднократных скрещиваний между собой близких родственников (братьев и сестер). Генотипическое разнообразие инбредных животных становится более выраженным с каждым новым скрещиванием. Например, известен ряд инбредных линий белых мышей, крыс и морских свинок. Исследования клонов чистых и инбредных линий организмов позволили не только измерить действие факторов внешней среды, но и более точно определить влияние генотипа на фенотипические различия. Научные результаты, полученные в этой области, совпадают с данными сельскохозяйственной практики.

Многочисленные исследования взаимодействия генотипа и среды на примере организмов многих видов показали, что для реакции определенного генотипа в ответ на фактор внешней среды всегда характерен диапазон, измеряемый количеством фенотипов, продуцируемых этим генотипом. Разнообразие фенотипов, возникающих в результате взаимодействия определенного генотипа с разными факторами среды (разными средовыми условиями), генетики называют нормой реакции этого генотипа.

Многие генетически детерминированные реакции организмов на внешние факторы среды имеют адаптивный характер, что обеспечивает жизнь и размножение организмов в колеблющихся условиях среды. Среди адаптивных реакций различают физиологический гомеостаз и гомеостаз развития. Физиологический гомеостаз — это генетически детерминированная способность организмов противостоять колеблющимся условиям внешней среды У млекопитающих, в том числе у человека, типичным примером физиологического гомеостаза является константность осмотического давления в клетках и концентрация водородных ионов в крови вследствие функционирования почек и наличия в крови буферных субстанций. Гомеостаз развития — это генетически детерминированная способность организмов так изменять отдельные реакции, что функции организмов при этом в целом сохраняются. Например, выход из строя одной почки сопровождается тем, что остающаяся почка выполняет двойную нагрузку. Примером гомеостаза развития может быть также приобретение переболевшим организмом иммунитета против соответствующей инфекции.

Часто между физиологическим гомеостазом и гомеостазом развития очень трудно выявить различия, поэтому многие адаптивные реакции носят промежуточный характер. Примером такой адаптивной реакции является изменение количества эритроцитов в крови у людей в зависимости от пребывания их на той или иной высоте над уровнем моря. Количество эритроцитов у людей, живущих в разных высотных условиях, повышается по мере удаления от уровня моря. Это связано с тем, что уменьшение содержания кислорода в атмосфере вызывает интенсификацию его транспорта эритроцитами в результате увеличения количества последних. Возвращение человека из высокогорного района в район, лежащий на уровне моря, сопровождается снижением количества эритроцитов.

Норма реакции у всех организмов имеет пределы, определяя их фенотипическое разнообразие лишь в условиях среды, которая для организмов любого вида не имеет резких и необычных отклонений. Например, многие тропические растения выживают в условиях повышенных или пониженных температур, характерных для стран с жарким климатом. Однако они погибают от мороза, к которому устойчивы растения, являющиеся обитателями северных широт. В случае человека потеря генотипом в результате мутации способности детерминировать адаптивные реакции на факторы обычной для него среды сопровождается наследственным заболеванием.

Оценка различных форм взаимодействия наследственности и среды позволяет считать, что наследуется генотип, но не фенотип, т. е. наследуются гены, но не свойства и признаки. Можно далее сказать, что свойства и признаки организмов формируются в процессе развития индивидуума, причем развитие находится под контролем генов и факторов среды. Последние могут изменять проявление признаков, определяемое нормой реакции. Следовательно, каждый признак организмов обусловлен как наследственностью, так и средой.

§ 41 Методы, генетические модели и

уровни изучения неслественности

Главным и единственным методом изучения наследственности организмов является классический генетический (гибридологический) анализ, или, как его еще называют, формальный генетический анализ. Основы этого метода были разработаны Г. Менделем. Этот метод заключается в последовательном разложении генома анализируемого организма на группы сцепленных генов, а групп сцепления — на генные локусы с дальнейшим установлением последовательности генных локусов вдоль хромосомных пар и выяснением тонкой структуры генов.

Генетический анализ в принципе подобен химическому анализу, задача которого заключается в разложении сложных химических соединений на более простые компоненты. Однако в отличие от химического анализа, например нуклеопротеидов, расщепление которых на структурные части основано на гидролизе, классический генетический анализ основывается на расщеплении (сегрегации) и рекомбинации генов в мейозе и осуществляется путем скрещиваний особей с разными признаками и учета результатов скрещиваний.

Схема генетического анализа организмов состоит из ряда последовательных этапов, а именно:

1. Идентификация генов.

2. Установление генных локусов на хромосомных парах.

3. Установление последовательности генных локусов вдоль хромосомных пар.

4. Выяснение тонкой структуры генов.

Результаты генетического анализа оформляют путем составления генетических карт.

Одним из важнейших показателей эффективности генетического анализа является его разрешающая способность, которая в общих чертах может быть аналогизирована с разрешающей способностью оптических методов исследования. Подобно тому, как разрешающая способность оптических приборов (микроскопов) ограничена волновой природой света, разрешающая способность генетического анализа ограничивается количеством исследуемого потомства, получаемого в скрещиваниях, ибо чем большим является количество потомства, тем большей является возможность обнаружения среди них редких рекомбинантов и, следовательно, установления частоты кроссинговера.

Начиная с 1910 г., в генетике в качестве экспериментальной модели (системы) широко используют плодовую мушку Drosophila melanogaster (рис. 103). Являясь эукариотом с дифференцированными тканями, этот организм очень удобен для изучения многих вопросов наследственности.

В частности, у этого организма было идентифицировано и изучено большое количество генных и хромосомных мутаций, причем хромосомные мутации из-за больших размеров в клетках слюнной железы оказались доступными для изучения с помощью обычного микроскопа.

На этом организме была показана «мощь» генетического анализа. Однако разрешающая способность генетического анализа всегда имеет ограничения, поскольку возможность получения большого количества потомства всегда ограничена до определенных пределов даже у тех видов, у которых оно составляет сотни организмов на пару, как, например, у D. melanogaster. Поэтому у организмов, размножающихся половым путем, в том числе и у плодовой мушки возможно выполнение лишь трех первых этапов генетического анализа.

Однако изучение других генетических систем, в частности микроорганизмов, показало, что половая репродукция не является единственным путем, при котором осуществляется объединение, расщепление и рекомбинация генетических структур, происходящих от исходных (родительских) организмов. Эти процессы могут проходить и при других формах генетического обмена. У микроорганизмов (Е. coli) бактериальных вирусов (фагов) и микроскопических грибов такими формами генетического обмена являются трансформация, конъюгация и трансдукция. Общим для них в сравнении с половой репродукцией высших организмов является то, что они приводят к объединению в одной клетке родительских генов и обеспечивают их расщепление и рекомбинацию, т. е. являясь альтернативами половой репродукции, представляют собой системы рекомбинации. Поэтому генетический анализ основывается и на таких системах рекомбинации. Больше того, использование этих систем рекомбинации привело к повышению разрешающей способности генетического анализа в гигантских размерах, ибо появилась возможность оперировать с огромным количеством организмов в потомстве, а также легко осуществлять тесты комплементации, а это позволило не только создать генетические карты ряда организмов (Е. coli, В. subtilis, фаги, низшие грибы), но и изучить тонкое строение их генов.

В качестве экспериментальных моделей широко используют также дрожжи. Являясь простейшими эукариотами, эти организмы обладают всеми преимуществами бактерий. Но кроме этого, они оказались доступными для изучения на них генетики митохондрий, сплайсинга РНК, гаплои-дии и диплоидии.

Классический генетический анализ используют в генетике растений и животных, а также их культивируемых клеток. Однако по отношению к высшим организмам тех видов, которым присуще длительное время между генерациями и малое количество потомства на пару, он либо невозможен, либо очень затруднен. Из-за невозможности классического генетического анализа организмов ряда видов изучение их наследственности проводят с помощью других методов. Например, для изучения наследственности человека используют метод родословных (генеалогический анализ), цитогенетический, популяционный, близнецовый и другие современные методы (см. гл. XIII).

Длительное время для изучения генетического контроля развития животных организмов использовали D. melanogaster. Однако, начиная с 60-х гг., в качестве модельного объекта в генетике развития стали использовать круглого гельминта Caenorhabditis (рис. 104). Имея длину в 1 мм, эта нематода состоит примерно из 1000 клеток. Ее генетический аппарат представлен 6 парами гомологичных хромосом, на которых локализовано около 3000 генов. В гаплоидном состоянии геном состоит из 8´107 пар нуклеотидов.

Что касается растений, то для изучения генетики развития этих организмов используют травянистое растение Arabidopsis thaliana (рис. 105). Преимущества этого растения в качестве экспериментальной модели заключаются в том, что его легко культивировать в лабораторных условиях и что оно имеет очень короткий срок вегетации (всего лишь 5 недель). Кроме того, геном этого растения состоит из 7´107 нуклеотидных пар.

У всех этих организмов идентифицированы различные мутации, созданы их геномные библиотеки и секвенировано большинство генов. Секвенирование стало методом изучения тонкого строения генов у всех организмов.

Развит