Смекни!
smekni.com

Расчет и проектирование светодиода (стр. 7 из 7)

Если активна область р-типа, то необходимо, чтобы электронная составляющая диффузионного тока преобладала над дырочной, а интенсивность рекомбинации в области объемного заряда была низка. Коэффициент инжекции gп , т.е. отношение электронной компоненты тока In0 к полному прямому току I=In0+Ip0, определяется по формуле:

gn=LpNd/[LpNd+(Dp/Dn)·LnNa], (2.12)

где Nd и Na - концентрации доноров и акцепторов в л- и р -областях.

Из выражения (2.6) следует, что для получения величины gп, близкой к 1, необходимо, чтобы Nd>>Na, Lp>Ln, Dn>Dp. Решающую роль, безусловно, имеет обеспечение соотношения Nd>>Na. Однако повышение концентрации носителей в инжектирующей области имеет свои пределы. Как правило, значения Nd (или Na) не должны превышать (1-5)·I019 см-3, так как при более высоком уровне легирования возрастает концентрация дефектов в материале, что приводит к увеличению доли туннельного тока и ухудшению, тем самым, инжектирующих свойств р-n-перехода [2]. Как будет видно из дальнейшего изложения, для повышения внутреннего квантового выхода излучательной рекомбинации в прямозонных полупроводниках необходимо повышать концентрацию носителей и в активной области, в связи с чем возникают дополнительные трудности с обеспечением одностороннего характера инжекции. Таким образом, в гомопереходах существуют трудности по обеспечению высокого коэффициента инжекции носителей в активную область, обусловленные противоречивыми требованиями к легированию p- и n-областей структуры для достижения высокого коэффициента инжекции и максимального квантового выхода электролюминесценции в активной области. В некоторых полупроводниках высокий коэффициент инжекции носителей в одну из областей р-n-перехода может быть обеспечен разницей в подвижности электронов и дырок. Так, в GaAs и других прямозонных соединениях высокий коэффициент инжекции электронов в р-область может быть осуществлен за счет более высокой подвижности электронов.

2.2.7 Расчёт светодиодного резистора

Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он выйдет из строя практически мгновенно.

Резистор R определяется по формуле :

R = (V S - V L) / I

Рисунок 2.6 - Схема подключения .


V S = напряжение питания

V L= прямое напряжение, расчётное для каждого типа диодов (как правило от 2 до 4 волт)

I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для выбраного диода

Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,

R = ( 9 В) / 0.02A = 350 Ом.

Вычисление светодиодного резистора с использованием Закон Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где :

V = напряжение через резистор (V = S - V L в данном случае)

I = ток через резистор

Итак R = (VS - VL) / I=(9В-3,6В)/0,02А=270Ом.


ВЫВОДЫ

В ходе данной курсовой работы:

были рассмотрены свойства светоизлучающих диодов, а также их типы, устройство, светоизлучающий кристалл и полупроводниковые материалы, используемые в производстве ;

были произведены расчеты некоторых параметров светодиода, а именно рассчитана эффективность светодиода, инжекции не основных носителей и нагрузочного резистора.

В ходе данных расчетов было установлено, что эффективность бывает, как приблизительная, так и уточнённая (E1=4.78 лм/Вт и E2=6.5 лм/вт). Был рассмотрен теоретический расчет инжекции не основных носителей в светодиодах и приведён пример расчёта светодиодного резистора (R=270 Ом).

Данные расчеты необходимы при проектировании, выборе и применение в какой либо цепи, светодиода.


СПИСОК ЛИТЕРАТУРЫ

1. В. И. Иванов, А. И. Аксенов, А. М. Юшин “Полупроводниковые оптоэлектронные приборы. / Справочник.”- М.: Энергоатомиздат, 1984 г..

2. Коган Л.М. Дохман С.А. Технико-экономические вопросы применения светодиодов в качестве индикации и подсветки в системе отображения информации. – Светотехника, 1990 – 289с.

3. Коган Л.М. Полупроводниковые светоизлучающие диоды, М.1989г. – 415 с.

4. Воробьев В.Л., Гришин В.Н. Двухпереходные GaP-светодиоды с управляемым цветом свечения. –Электронная техника. 1977 г. – 368 с.

5. Федотов Я.А. Основы физики полупроводниковых приборов.М.: Советское радио 1969г. – 294 с.

6. Амосов В.И. Изергин А.П. Диодные источники красного излучения на GaP, полученном методом Чахральского. 1972г. – 183 с.

7. Нососв Ю.Р. Оптоэлектроника. Физические основы, приборы и устройства. М. 1978г. – 265 с.

8. Мадьяри Б. Элементы оптоэлектроники и фотоэлектрической автоматики. М. 1979г. – 315 с.

9. Ефимов И.Е., Горбунов Ю.И., Козырь И.Я. Микроэлектроника. Проектирование, виды микросхем, функциональная электроника. – М.: Высшая школа, 1987. – 416 с.

10. Ефимов И.Е., Козырь И.Я. Основы микроэлектроники. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1983. – 384 с.

11. Степаненко И.П. Основы микроэлектроники. – М.: Сов. радио, 1980. – 424 с.

12. Полупроводниковые приборы: транзисторы. Справочник. Под ред. Н. Н. Горюнова – М.: Энергоатомиздат, 1985г. – 904 с.

13. Ю П. Основы физики полупроводников /П. Ю, М. Кардона. Пер. с англ. И.И. Решиной. Под ред. Б.П. Захарчени. 3-е изд. М.: Физматлит, 2002. 560 с.

14. Федотов Я. А. Основы физики полупроводниковых приборов. М., “Советское радио”, 1970. – 392 с.

15. Тейлор П. Расчет и проектирвание тиристоров: Пер с англ. – М.: Энергоатомиздат, 1990. 208с.

16. Гершунский Б.С. Основы электроники и микроэлектроники: Учебник. – 4-е изд., К.: Вища школа,1983 г . –384 с.