Мир Знаний

Наша Солнечная система (стр. 3 из 8)

Но поскольку диаметр Плутона, измеренный самыми современными на тот момент астрономическими приборами, достигал размеров Меркурия (около 5000 км), ученым ничего не оставалось, как признать его девятой планетой Солнечной системы. Многие годы во всех учебниках по астрономии напротив данных о Плутоне стояли прочерки или вопросы и никто не помышлял о том, чтобы изменить статус этого небесного объекта. А открытие 30 лет назад у Плутона спутника и вовсе поставило его а один ряд с такой системой, как Земля—Луна.

Но вот настал век новых технологий, космических телескопов и наземных оптических обсерваторий с адаптивной оптикой, но первоначально это не предвещало для Плутона ничего плохого. Астрономы направляли объективы новых телескопов в первую очередь в глубь Вселенной. «Гром среди ясного неба» раздался в 1998 году, когда был открыт транснептуновый объект Хаос. Но он оказался даже меньше самых крупных астероидов из пояса между Марсом и Юпитером.

Ученые успокоились, но ненадолго. Начиная с 2000 года открытия транснептуновых объектов или объектов пояса Койпера посыпались одно за другим. В 2002 году наделал много шума Кваоар, лишь в два раза уступающий Плутону в диаметре. На следующий год соперником девятой планеты стала Седна, вплотную приблизившись к ней по размерам. Последней каплей, «переполнившей чашу терпения», стала Ксена, размеры которой, по первоначальным оценкам, были в полтора раза больше, чем у Плутона. Хотя в последствии выяснилось, что Ксена больше лишь на пару сотен километров, ход истории уже изменить было нельзя.

Назревала нестабильная ситуация, требующая немедленного разрешения. Что делать? Добавлять новые открытые тела в состав планет? Считать их объектами другого типа? На все эти вопросы должен был ответить Международный астрономический союз, 26-я Ассамблея которого проходила в чешской столице в августе нынешнего года.

Рассматривая передел Солнечной системы, ученые поначалу решили увеличить количество планет до 12, добавив к имеющимся Цереру, Ксену и Харон (спутник Плутона). Но все же окончательное решение оказалось не в пользу Плутона, просуществовавшего в качестве большой планеты 76 лет.

Горячие дебаты закончились резолюцией по планетам, состоящей из нескольких пунктов, достаточно точно определяющих основные характеристики, которыми должна обладать большая планета (по определению — классическая планета). Теперь классической планетой считается небесное тело, которое обращается вокруг Солнца, имеет достаточную массу для того, чтобы самогравитация превосходила твердотельные силы и тело могло принять гидростатически равновесную (близкую к сферической) форму, и, кроме этого, очищает окрестности своей орбиты (то есть рядом с планетой нет других сравнимых с ней тел). Под это определение попадают Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.

Следующий тип небесных тел, входящих в состав Солнечной системы, — это карликовая планета или небесное тело, которое обращается вокруг Солнца, имеет достаточную массу для того, чтобы тело могло принять близкую к сферической форму, но которая уже не очищает окрестности своей орбиты и не является спутником другой планеты. Отныне Плутон, а также Церера и 2003 UB313 (Ксена) будут относиться именно к этому типу небесных тел, хотя астрономы всё же хотят отнести их к особому классу объектов, которые будут иметь общее название плутоны. Поэтому, Плутону, похоже, не придется сильно «расстраиваться», т.к. он будет возглавлять новый класс небесных объектов.

Интересно отметить еще одну деталь. Получается, что NASA исследовало космическими аппаратами все восемь планет Солнечной системы уже 17 лет назад («Вояджер-2» пролетел около Нептуна в 1989 году). Предназначенный же для исследования Плутона космический корабль «Новые горизонты», отправившийся к 9-й планете Солнечной системы в январе 2006 года, в 2015 году будет изучать уже карликовую планету класса плутонов. Кстати, в 2007 году NASA планирует запустить космический корабль Dawn, целью которого станет изучение Цереры. Поэтому именно она окажется первой в истории освоения космического пространства карликовой планетой, которой достигнет рукотворный аппарат.

Прочие небесные тела, обращающиеся вокруг Солнца, будут прописаны во всех учебниках как малые тела Солнечной системы. К данному типу отнесут большинство астероидов между Марсом и Юпитером, которые не отвечают критерию карликовой планеты, а также транснептуновые объекты, кометы и все остальные, обращающиеся вокруг Солнца, большие каменные глыбы.

Слово «космос» в переводе означает «порядок», и порядок, наведенный в Солнечной системе астрономами, является закономерным итогом многолетних сомнений относительно Плутона и других «лишних» небесных тел. Теперь нас окружает космос в полном смысле этого слова. Кроме всего прочего, дополнительные возможности в наблюдениях получила любительская астрономия. Теперь любой желающий, вооружившись биноклем, может легко найти все 8 классических планет Солнечной системы! [3]


6. Главная цель полетов к телам Солнечной системы

В арсенале космической техники к настоящему времени появились достаточно отработанные (в том числе в летных испытаниях) средства, которые позволяют поднять на качественно новый уровень эксперименты по изучению Солнечной системы. В данном случае имеются в виду как технические и схемные решения при проектировании КА, так и новые разработки их агрегатов и систем, в частности, разработанные в последнее десятилетие электроракетные двигатели (ЭРД) и легкие солнечные энергетические установки (СЭУ). Скорости истечения рабочего тела, обеспечиваемые ЭРД, в 5-10 раз выше аналогичных скоростей, развиваемых ракетными двигателями, работающими на химическом топливе. ЭРД позволяют резко повысить долю полезной нагрузки в весовом балансе космических аппаратов. Появляется возможность по-новому подойти к реализации космических полетов к телам Солнечной системы и, прежде всего, к ее малым телам - спутникам планет, астероидам, кометам. Ответ на вопрос о главной цели полетов к указанным малым телам, по-видимому, идентичен ответу на более общий вопрос - о главной цели полетов ко всем телам Солнечной системы.

Ответ этот достаточно четко и ясно был сформулирован еще при планировании первых беспилотных космических экспедиций к Луне, Марсу и Венере - эти полеты нужны для пополнения наших эмпирических (в первую очередь космохимических) знаний для решения одной из фундаментальных проблем естествознания - проблемы происхождения и эволюции Солнечной системы. Решение этой проблемы крайне необходимо для дальнейшего успешного развития наук о Земле. Именно ее нерешенность сильно затрудняет построение надежной геохимической модели Земли и, соответственно, надежных моделей глобальных геологических (в том числе тектонических) процессов. Надежная геохимическая модель Земли, кроме того, очень нужна для разработки эффективной стратегии поисков и освоения новых ресурсов жизнеобеспечения человечества. Другая важная цель на первых этапах исследования Солнечной системы с помощью космических аппаратов - поиск внеземной жизни в ее пределах. В настоящее время к ней вновь проявляется интерес.

В далекой перспективе возможна постановка и других целей таких полетов, например, освоение для созидательных задач человечества практически неисчерпаемых ресурсов околосолнечного космического пространства.

Полеты космических аппаратов к различным телам Солнечной системы уже дали ценный эмпирический материал, который обрабатывается и по настоящее время. Однако этого материала явно недостаточно для решения указанной выше проблемы. Причин здесь несколько. Одна из них заключается в том, что зондирование исследуемых тел, как правило, было дистанционным. Лишь с Луны был доставлен космохимический материал, который был подвергнут тонкому химическому анализу в земных лабораториях. Дистанционное же определение химического состава тел при всем совершенстве современных методов имеет ограниченные возможности.

Другая причина заключается в характере большинства тел, подвергавшихся дистанционному космохимическому зондированию. Эти тела, как правило, весьма крупные (за исключением кометы Галлея и некоторых спутников планет) и за время существования Солнечной системы их поверхность и сами тела в целом претерпели значительную трансформацию в результате магматической дифференциации с последующим метаморфизмом их вещества и мощных эрозионных процессов на их поверхности. Таким образом, обнаружить на них первичное реликтовое вещество, сохранившееся со времени образования Солнечной системы, оказалось пока невозможным. Между тем такое реликтовое вещество, собранное из различных областей Солнечной системы, может дать ключ к пониманию механизма важнейших процессов, происходивших в период формирования Солнечной системы. Поэтому его поиск должен быть одним из важнейших ориентиров при формировании современной программы исследования космического пространства. Информация о реликтовом веществе в начальный период образования Солнечной системы будет способствовать углублению наших знаний о больших планетах, которые сформировались из мельчайших небесных тел, содержавших данное вещество. Таким образом, химический и физический анализы проб грунта обеспечили бы нас важной информацией для осмысления процессов формирования планет.

Как уже было сказано выше, все планеты и большинство их спутников за время своей эволюции претерпели значительные изменения под действием внешних факторов и, что наиболее существенно, в результате эндогенных процессов, таких как вулканизм. Эти процессы коренным образом преобразовали вещество планет и практически стерли память о первородном веществе. Принципиально иная ситуация обстоит с малыми телами в Солнечной системе - кометами, астероидами и малыми спутниками. Как на других малых телах Солнечной системы, на Фобосе и Деймосе ввиду их малости при обычном содержании в их веществе радиоактивных элементов исключается внутренний нагрев и эндогенная тектоническая активность. Поэтому они могут сохранить тот исходный, первичный материал протопланетного облака, из которого образовались планеты Солнечной системы. Воздействие внешних факторов (солнечный ветер, космические лучи, метеориты), которому подвергаются малые тела, лишь в незначительной степени модифицируют внешний слой реголита. Детальные исследования таких тел позволят получить данные о ранних этапах образования тел Солнечной системы, происхождении и эволюции планет, в том числе и Земли. В связи с этим исследования малых тел, таких как спутники Марса Фобос и Деймос, представляют особый интерес и являются в настоящее время приоритетными.