Смекни!
smekni.com

Применение проблемного обучения при изучении темы: "Предельные одноосновные кислоты" (стр. 2 из 4)

При использовании проблемного подхода нужно помнить, что только тогда можно говорить о развитии мышления, когда проблемные ситуации используются регулярно, сменяя одна другую, т. е. характеризуются динамичностью.

Наиболее удачно найденной проблемной ситуацией следует считать такую, при которой проблему формулируют сами учащиеся.

Особенности использования проблемного обучения на уроке.

Учитель при реализации проблемного обучения строит взаимоотношения с классом так, чтобы учащиеся смогли проявить инициативу, высказать предположения, иногда неправильные, но их во время дискуссии опровергнут другие учащиеся. Каждое предположение должно быть обоснованным. Следует отличать гипотезу от угадывания, не имеющего ничего общего с проблемным обучением.

Вопросы учителя должны обязательно носить проблемный характер. Если учитель выказывает свое предположение, то он его также обосновывает. Чтобы умело руководить дискуссией и направлять ее в нужное русло, требуется серьезная теоретическая подготовка и глубокое знание предмета.

Не обязательно, чтобы на уроке использовались все этапы проблемного обучения. В объяснение можно включать отдельные вопросы проблемного характера. Например, при изучении электролиза раствора хлорида натрия можно поставить вопрос, почему на катоде восстанавливается не ион натрия, а ион водорода, и предложить учащимся на основе электрохимического ряда напряжений объяснить причину этого явления. Если же вопрос требует только репродуктивного ответа, его проблемным считать нельзя.Как и всякий методический подход, проблемное обучение имеет не только позитивные, но и негативные стороны.

Важной положительной стороной проблемного обучения является его развивающий характер. Изложение делается более доказательным и потому убедительным. Учащиеся мыслят творчески, диалектически, приучаются к поиску. Обучение с использованием такого подхода более эмоционально, что способствует повышению интереса к учению, оказывает воспитывающее воздействие, так как это формирует убеждения и в конечном счете мировоззрение, обеспечивает прочность знаний, так как знания, добытые путем самостоятельного поиска, всегда удерживаются сознанием дольше полученных в готовом виде.

В результате осуществления проблемного подхода учащиеся приобретают новые знания, устанавливают новые связи между известными и неизвестными фактами и понятиями. Проблемное обучение можно использовать и как способ диагностики интеллектуальных возможностей учащихся.

К недостаткам проблемного подхода следует отнести слабую управляемость мыслительным процессом. Однако в этом заключено и его преимущество, так как творческое мышление требует свободы. Осуществление проблемного подхода требует гораздо больше времени.

2. ОСНОВНЫЕ ПРОБЛЕМНЫЕ СИТУАЦИИ ПРИ ИЗУЧЕНИИ ТЕМЫ «ПРЕДЕЛЬНЫЕ ОДНОООСНОВНЫЕ КИСЛОТЫ»

Карбоновые кислоты. Получение, применение и их важнейшие представители

Карбоновые кислоты – класс органических соединений, молекулы которых содержат карбоксильные группы СООН, их различают по строению углеводородного остатка, по числу карбоксилов, наличию дополнительных функциональных групп (гидроксильных ОН, аминных NН2 и др.). Обладают слабыми кислотными свойствами.

Предельные (насыщенные) карбоновые кислоты – соединения, в молекулах которых карбоксильные группы связаны с радикалами предельных или циклических углеводородов, например СН3СООН – уксусная кислота. В непредельных (ненасыщенных) кислотах карбоксильные группы связаны с остатками, содержащими одну или более двойных или тройных связей: СН2 = СООН – акриловая, НС = С – СООН – пропаргиловая кислота; а в ароматических кислотах – с радикалами ароматических соединений, например:

Когда в углеродных остатках карбоновых кислот присутствуют другие функциональные группы, их наименование входит в названия кислот. Так, содержащие гидроксильную группу кислоты называются оксикислотами (СН2ОН-СНОН-СООН – глицериновая), аминогруппу – аминокислотами


2N – СН2 – СООН), альдегидную группу – альдегидокислотами и т.д.


Разнообразие функциональных групп и их различное расположение в углеводородных остатках являются причиной разнообразия как физических, так и химических свойств кислот.

Несмотря на то, что карбоновые кислоты относятся к слабым кислотам, различие в их кислотности может быть очень велико. Так, трихлоруксусная кислота С13С – СООН в 700 раз сильнее уксусной СН3 – СООН. Ароматические кислоты, как правило, сильнее алифатических, а дикислоты с близко расположенными карбоксилами (НООС-СООН – щавелевая, НООССН2СООН - малоновая) намного сильнее монокарбоновых кислот.

Карбоновые кислоты образуются при окислении альдегидов:


Эта реакция протекает очень легко, и при окислении спиртов часто сразу получают кислоты, а не альдегиды:

СН3СН2ОН + О2® СН3СООН + Н2О

Гидроксильные группы в карбоксиле могут замещаться на другие остатки с образованием производных карбоновых кислот:


сложный эфир


амид

Если для реакции вместо монокислоты (одноосновной) взять дикислоту (двухосновную), а вместо спирта и амина – двухатомный спирт и диамин, то могут быть получены полимеры, в том числе полиэфиры, на основе которых получают синтетические волокна.

Производные многих карбоновых кислот, особенно алифатических, содержатся в таких природных соединениях, как жиры и белки. Следовательно, карбоновые кислоты и их производные играют важную роль в физиологии животных и растений. Эти вещества широко используются также для получения лекарственных препаратов (салициловая кислота и ее производные), витаминов (аскорбиновая кислота – витамин С), моющих средств и т.д. [4]

Насыщенные монокарбоновые кислоты. Методы получения

Монокарбоновые кислоты получают окислением органических соединений, гидролизом галогенпроизводных, путем превращения металлорганических соединений. Промышленно важным методом является реакция карбонилирования спиртов, эфиров, галогенуглеродов. Известны также многие специфические методы получения карбоновых кислот.

Приведенная ниже упрощенная схема хорошо иллюстрирует генетическую связь между углеводородами, галогенпроизводными, спиртами, альдегидами и карбоновыми кислотами:


1. Реакция окисления. Конечным продуктом окисления многих органических соединений являются карбоновые кислоты. Для окисления используют как кислород (воздух) в присутствии катализаторов (соли Со, Мn), так и другие неорганические (Н2О2, СrО3, КМnО4, МnО2, Н2О2, О2) и органические (пероксикарбоновые кислоты, гидропероксиды) окислители. Реакции рассмотрены в предыдущих главах.


2. Реакции гидролиза. Карбоновые кислоты обычно получают гидролизом соединений, содержащих трихлорметильную группу и цианогруппу (нитрилы), иногда гидролизом сложных эфиров и амидов:

1. Металлорганический синтез. Активные металлорганические соединения реагируют с СО2 и образуют карбоксилаты – соли карбоновых кислот:


(Х = ОН, галоген, ОR, ООСR1).

В качестве катализаторов применяют карбонилы кобальта НСo(СО)4 и родия Рh(CO)L3, Rh(CO2)L2, температура реакции 100-200 °С, давление от атмосферного (0,1 МПа) до 20 МПа (200 атм). Карбонилы родия являются более эффективными.

В присутствии катализатора происходит алкилирование молекул оксида углерода СО.


Алкены в этих условиях также дают карбоновые кислоты. При карбонилировании алкенов в присутствии водорода получаются альдегиды

Реакции карбонилирования являются промышленными способами получения ряда кислот. Для получения карбоновых кислот применяются также ряд специфических методов. Карбоновые кислоты образуются при гидролизе сложных эфиров и амидов, полученных специфическими реакциями (например, окисление кетонов по Байеру – Виллигеру, реакция Тищенко, перегруппировка Бекмана).

Физические свойства и строение

Насыщенные монокарбоновые кислоты представляют собой бесцветные жидкие или кристаллические вещества с острым своеобразным запахом, высшие карбоновые кислоты (С15 – С13) имеют слабый запах стеарина. Они имеют весьма высокие температуры кипения, что свидетельствует о значительной межмолекулярной ассоциации.