Смекни!
smekni.com

Проектирование токарного станка с числовым программным управлением повышенной точности (стр. 11 из 12)

Категория производства и класс помещений по пожарной опасности определяются в соответствии со СниП II-2–80: категория Д.

Основными причинами пожаров при холодной обработке металлов резанием являются короткие замыкания в электрооборудовании и проводке, самовозгорание промасленной ветоши и одежды, нарушение противопожарного режима и правил обращения с горючими жидкостями.

Пожарная безопасность в отделении холодной обработки металлов резанием обеспечивается системой предотвращения пожара, противопожарной защитой и организационно-техническими мероприятиями в соответствии с ГОСТ 12.1.004–91 «ССБТ. Пожарная безопасность. Общие требования» и Тповыми правилами пожарной безопасности.

4.8 Условия труда (по психофизиологическим факторам)

Станок с ЧПУ обслуживают оператор и наладчик. Наладку и переналадку осуществляет наладчик, а подналадку, оперативную работу и контроль за работой – оператор.

Функции оператора при эксплуатации станка сводятся к установке, закреплению и выверке приспособления и инструмента на станке, установке программоносителя и заготовок, замене инструмента, снятию деталей и наблюдением за ходом работы станка.

Трудовая функция наладчика включает в себя приемку и осмотр оборудования, подготовку инструмента и приспособлений к наладке, подготовку программоносителя к работе, наладку, переналадку и т.д.

Трудовая деятельность оператора связана с возможным действием следующих вредных факторов психофизиологических факторов: нервно-психических перегрузок, гиподинамии, неудобной рабочей позы, перенапряжения зрительного анализатора, эмоционального перенапряжения в связи с высокой ответственностью за технологический процесс.

Работа оператора связана с рабочей позой стоя, непостоянной ходьбой и сопровождается временным незначительным физическим напряжением и энергозатратами в пределах 121–150 ккал/ч (140–450Вт). В соответствии с ГОСТ 12.1.005–88 она относится к легкой физической работе категории 1б.

В связи с этим на рабочем месте обеспечиваются допустимые нормы температуры, относительной влажности и скорости движения воздуха, приведенные в таблице 3.


Таблица 17. Допустимые показатели микроклимата на рабочем месте оператора (по ГОСТ 12.1.005–88)

Периодгода Категория работ Температура,
Относительнаявлажность Скоростьдвижения воздуха
Верхняя
граница
на постоянных рабочих местах
Нижняя
граница
на постоянных рабочих местах
Допустимая на рабочих местах, не более Допустимая на рабочих местах
холодный Легкая –1б 24 20 75 Не более 0,2
теплый Легкая – 1б 28 21 60 (при27
)
0,1–0,3

Режим работы станочника физиологически обоснован. Работа осуществляется в две смены. Ночная смена исключается. Продолжительность рабочего дня составляет 8 часов. Кроме обеденного перерыва продолжительностью 1 час в первой и второй половине дня предусматриваются двадцатиминутные перерывы на отдых и физиологические потребности.

Условия зрительной работы оператора на рабочем месте характеризуются следующими показателями:

- наименьший размер объекта различения – 0,15–0,3 мм;

- разряд зрительной работы – 2;

- фон – средний;

- контраст объекта с фоном – средний;

- требования к цветопередаче отсутствуют;

- в поле зрения имеются вращающиеся и движущиеся части;

- наличие в поле зрения отражений блеклости;

- характер зрительной работы – работа с повышенным напряжением зрительного анализатора.

Исходя из зрительных условий труда и требований НТД определяются следующие требования к освещению на рабочем месте оператора станка.

В соответствии с ГОСТ 12.3.025–80 и ГОСТ 12.2.009–80 при наладке, ремонте и устранении сбоев на станках с ЧПУ освещенность должна быть 2500 лк. При работе на станках с ЧПУ освещенность может снижаться до 1000 лк. В механических чехах следует принимать систему комбинированного освещения, в котором общее освещение должно составлять не менее 300 лк.

Для общего освещения отношение максимальной освещенности к минимальной не должно превышать 1,3. Величина коэффициента пульсации светового потока не должна превышать 20% от общего освещения. В связи с отсутствием требований к цветопередачи особые требования к спектру источников не предъявляются.

4.9 Экологическая безопасность

Технологические операции, выполняемые на станке (токарные), связаны с источниками загрязнения водного бассейна нефтепродуктами и отработанной СОЖ, возникновением металлических отходов, промасленной ветоши, производственного мусора и других твердых отходов, представляющих опасность для территорий. Интенсивность выделения аэрозолей СОЖ и других вредных примесей в удаляемом воздухе незначительна, поэтому концентрация вредных веществ в вентиляционных выбросах не превышает ПДК. В связи с этим мероприятия по очистке вентиляционного воздуха не требуются. Шумовое воздействие станка на окружающую среду предотвращается стенами цеха, обеспечивающими достаточную звукоизоляцию источников шума от внешней среды. При отработке срока службы станка основные его элементы конструкции становятся металлоломом. Его утилизация связана с наличием ртутных выпрямителей. Все материалы конструкции могут утилизироваться.

4.10 Обеспечение электробезопасности

Описание схемы электроснабжения. Ток с тепло-электро-централи (ТЭЦ) по трех фазной трех проводной цепи поступает на цеховую подстанцию, вторичная обмотка которой соединена звездой (три фазы и ноль). С цеховой подстанции ток поступает на щит силовой (ЩС). Со щита по четырех проводной трех фазной цепи ток поступает на двигатель станка (380В). Приводные двигатели питаются от сети 380В. В энергосети станка напряжение обычно составляет 24–36В.

Опасность электротравм при повреждении изоляции электрооборудования участка, определяется эффективностью защитных средств.

Производственное помещение, в котором эксплуатируется модернизированный станок, характеризуется наличием токоведущих полов и возможностью одновременного касания металлических конструкций, соединенных с землей, и элементов оборудования, находящихся под напряжением. В соответствии с ПЭУ механический цех с такими условиями относится к помещениям особо опасным по поражению электрическим током. Следовательно, элементы оборудования, находящиеся под напряжением должны заземляться или зануляться в соответствии с ГОСТ 12.1.030–81 «ССБТ. Электробезопасности. Защитное заземление, зануление».

В сетях, где напряжение до 1000В, основными мероприятиями по обеспечению безопасности является использование заземлительных устройств, состоящих из заземлителей и соединительных проводов. Контур заземления устанавливается под площадкой, на которой смонтировано оборудование. При замыкании фазы на корпус, ток замыкания равномерно растекается между всеми заземлителями контура. При растекании тока от заземлителя по поверхности почвы происходит распределение потенциала по закону гиперболы. В результате наложения потенциалов обеспечивается относительное выравнивание в заземленной зоне. Поэтому при прикосновении к корпусу электрооборудования, в момент замыкания на корпус разность потенциалов между рукой и ногами человека не достигает опасного значения.

Рис. 5. Расчетная схема заземления: 1-корпус; 2-заземляющий проводник; 3 – соединительная полоса; 4-электрод.

Проведем расчет контура заземления для механического участка с периметром 50 метров. Оборудование механического участка питается от сети (U=380В) с изолированной нейтралью, грунт – суглинок, площадь производственного помещения 20*30 м.

1. Определяем требуемое сопротивление заземляющего устройства Rз.

В электроустановках (U<1000В), с изолированной нейтралью, сопротивление заземлляющего устройства не должно превышать 4Ом.

2. Определяем сопротивление искусственного заземлителя.

Поскольку естественный заземлитель не используется, то требуемое сопротивление искусственного заземлителя составляет 4 Ом.

3. Выбираем конструкцию заземлителя.

Для условий большого контура помещения принимается заземляющее устройство из вертикальных круглых стержней, расположенных в ряд. Они соединяются стальной полосой 50*5 Глубина закладки t0 вертикальных стержней 1 м. Длина стержней l=3, диаметр d=0,1 м.

Параметр t=t0 +0,5l=1+0,5*3=2,5.

4. Определим расчетное удельное сопротивление грунта с учетом данных таблиц 2.1 и 2.2. [18].

]

5. Определение сопротивления одиночного вертикального стержня.

6. Определяем ориентировочное количество вертикальных стержней.

Число стержней определяется из выражения

Учитывая, что экранирование электродов приведет к увеличению сопротивления растекания, округляем число стержней и принимаем n=12.

7. Определяем коэффициент использования электродов.

Для определения

принимаем а=2l=6 м. По таблице 2.3 [18]
=0,72. По таблице 2.4
.