Смекни!
smekni.com

Кольцевой индукционный датчик угла (стр. 2 из 6)

Далее будем рассматривать кольцевой индукционный датчик угла с обмотками на статоре и роторе. В соответствии с техническим заданием КИДУ является двухполюсным с двумя взаимно перпендикулярными обмотками на статоре и роторе.

2. Конструкция двухполюсного КИДУ

Двухполюсные КИДУ выполняются как неявнополюсные электрические машины [1], имеющие равномерно распределенные пазы на статоре и роторе (рисунок 2.1). Пакеты статора и ротора набираются из листовой электротехнической стали или пермаллоя. Для получения однородных магнитных свойств применяется веерная сборка листов и скос паза ротора на одно зубцовое деление. В пазы статора и ротора укладываются по две взаимно перпендикулярные обмотки; закон распределения витков по пазам подбирается таким образом, чтобы коэффициент взаимоиндукции между обмотками статора и ротора изменялся по синусоидальному (косинусоидальному) закону от угла поворота ротора. Напряжение к обмоткам ротора подводится (снимается) с помощью контактных колец и щеток или с помощью контактных пружин; во втором случае угол поворота ротора ограничен.

На рисунке 2.1. обозначены:

1 – пакет статора; 2 – пакет ротора; 3 – корпус; 4 – крышки; 5 – подшипники; 6 – контактные кольца.

Рисунок 2.1 Принципиальная конструктивная схема КИДУ.

3. Принцип действия КИДУ

Датчик углапреобразует угол поворота a в два переменных напряжения, амплитуды которых пропорциональны соответственно sinaи cosa.

Рисунок 3.1 Электрическая схема

Рисунок 3.2 К принципу работы

Наиболее просто это преобразование реализуется с помощью двухполюсного четырехобмоточного ВТ.. Схема включения приведена на рисунок 3.1. Здесь f – обмотка возбуждения (field winding); k – квадратурная обмотка (killer winding); a – косинусная обмотка; б – синусная обмотка.

При рассмотрении основных режимов работы ВТ примем следующие допущения [3]:

1) коэффициенты взаимоиндукции между обмотками статора и ротора изменяются по синусоидальному (косинусоидальному) закону;

2) обмотки на статоре (роторе) электрически перпендикулярны;

3) потери в стали пренебрежимо малы;

4) собственные параметры обмоток статора и ротора попарноодинаковы и постоянны.

Такой ВТ называется идеализированным.

Наиболее простым является режим холостого хода Zна=Zнб=¥. При включении обмотки возбуждения в сеть переменного тока в расточке машины образуется переменный продольный магнитный поток Ф, ось которого совпадает с осью обмотки возбуждения. Этот поток индуктирует (рисунок 3.2):

э. д. с. в обмотке возбуждения

; (3.1)

э. д. с. в косинусной и синусной обмотках

(3.2)

Здесь

и
– эффективные значения витков обмотки возбуждения и вторичных обмоток; Е – действующее значение вторичной э. д. с, когда оси обмоток совпадают (a = 0).

Отношение

называется коэффициентом трансформации.

Уравнение э. д. с. для обмотки возбуждения имеет вид

. (3.3)

Этому уравнению соответствует схема замещения, приведенная на рисунке 3.3. Вторичная обмотка показана для случая, когда ее ось совпадает с осью обмотки возбуждения.

Отношение

(3.4)

называется коэффициентом передачи по напряжению

Э.д.с. квадратурной обмотки

в режиме холостого хода у идеализированного ВТ равна нулю. При нагрузке вторичных обмоток ВТ различными сопротивлениями
электромагнитные процессы существенно усложняются. Во вторичных обмотках а и b появляются токи
и
, которые совместно с токами в обмотке возбуждения создают намагничивающие силы по продольной оси:

(3.5)

по перечной оси

(3.6)

Этим намагничивающим силам будут соответствовать продольный и поперечный магнитные потоки

и
можно представить себе как совокупность двух однофазных трехобмоточных трансформаторов, соединенных по схеме рисунка 3.3.

Магнитный поток

,если пренебречь падением напряжения на собственном сопротивлении обмотки возбуждения, остается постоянным и его можно найти из следующего уравнения

. (3.7)

Поперечный поток

создается н. с. вторичных обмоток и его величина в общем случае зависит от угла поворота ротора a

(3.8)

Этот поток будет индуктировать во вторичных обмотках добавочную э.д.с, что приведет к искажению синусоидальной зависимости вторичных напряжений от угла поворота ротора a. При замкнутой накоротко квадратурной обмотке этот поток демпфируется и выходные напряжения сохраняют синусоидальную зависимость от угла поворота ротора при любых сопротивлениях нагрузки. В этом случае говорят, что выполнено первичное симметрирование.

Рисунок 3.3Схема замещения двух обмоточного КИДУ.

Рисунок 3.4 Приведение КИДУ к двум одно фазным трансформаторам.

Поперечный поток

, равен также нулю, если

. (3.9)

Токи

и
равны

(3.10)

где Z – собственное сопротивление вторичной обмотки.

Подставляя эти выражения в формулу (3.9), получим

. При этом условии, называемом условием вторичного симметрирования, вторичное напряжение изменяется по синусоидальному закону от угла поворота ротора.

3.1 Уравнения э. д. с.

Будем считать, что параметры обмоток не приведены к обмотке возбуждения. В этом случае в индуктивное сопротивление взаимоиндукции должен войти коэффициент трансформации. В матричном виде уравнения э.д.с. имеют вид:

, (3.11)

где Zf, Zk– собственные сопротивления обмоток возбуждения и квадратурной, включая сопротивление источника питания и симметрирующее сопротивление; k – коэффициент трансформации; хт индуктивное сопротивление взаимоиндукции обмотки возбуждения;

и
сопротивления косинусной и синусной обмоток, включая сопротивление нагрузки. Решая уравнения (3.11) относительно токов, получим

(3.12)

Из полученных выражений следует, что выходные напряжения ВТ

и
изменяются по косинусоидальному и синусоидальному законам от угла поворота ротора а при выполнении одного из следующих условий:
условия первичного симметрирования;
– условия вторичного симметрирования.

Из первой формулы (3.12) следует, что потребляемый ток и входное сопротивление не зависят от угла a, если

, т. е. выполнено вторичное симметрирование. Точно также можно показать, что выходное сопротивление вторичных обмоток не зависит от угла a, если выполнено первичное симметрирование. Точность вторичного симметрирования (а при питании со стороны вторичных обмоток – и первичного симметрирования) можно оценить по э. д. с. квадратурной обмотки, которая определяется по формуле
при
. Подставляя сюда значение
из () и полагая, что
получим: