Смекни!
smekni.com

Механизмы и несущие конструкции радиоэлектронных средств (стр. 7 из 9)

(sig) 1, 2 < (sig) p ; tau < (tau) p . (9.3)

9.2. Работа стержней при кручении

9.2.1. Общая характеристика кручения. Это - плоское напряженное состояние, возникающее под действием крутящего момента Tк (рис.9.5) .

Соседние сечения стержня, нормальные к его оси, поворачиваются относительно друг друга на угол dfi, поэтому в них возникают касательные напряжения tau; элементарные площадки на его боковой поверхности деформируются так же, как и при сдвиге, т.е. напряженные состояния при кручении и сдвиге одинаковы.

9.2.2. Деформации при кручении. Для элементарного цилиндра радиусом ro и длиной dx, выделенного из скручиваемого стержня (рис.9.6) :

gam = ro*dfi/dx . (9.4)

9.2.3. Напряжения при кручении. Закон Гука при кручении получают из выражения закона Гука при сдвиге (9.1) и соотношения (9.4) :

tau = G*ro* (dfi/dx) . (9.5)

По закону парности касательные напряжения существуют также и в осевой плоскости стержня (рис.9.7) ; напряжения tau можно связать с внешним моментом Tк :

Tк = int (tau*ro*dS) S = int[G*ro* (dfi/dx) *dS]S =

= G* (dfi/dx) *int[ro**2*dS]S = Jp*G* (dfi/dx) . (9.6)

Величина Jp = int (ro**2*dS) S - полярный момент инерции сечения.

Закон Гука для стержня жесткостью G*Jp и длиной l :

dfi/dx = Tк/ (G*Jp) ; fi = Tк*l/ (G*Jp) . (9.7)

Связь напряжений с внешним моментом:

tau = Tк*ro/Jp ; (tau) max = Tк* (ro) max/Jp = Tк /Wp, (9.8)

где Wp = Jp/ (ro) max - полярный момент сопротивления сечения стержня.

9.2.4. Геометрические характеристики сечений при кручении.

Это - полярные моменты инерции Jp и сопротивления Wp . Для кольцевого сечения с внешним R и внутренним r диаметрами:

Jp = (pi*D**4) * (1- alf**4) /32 ;

Wp = (pi*D**3) * (1- alf**4) /16, (9.9)

где alf = d/D .

В условиях сдвига при кручении работают валы и другие детали, нагруженные крутящими моментами. Рациональные формы сечений - имеющие максимальный момент сопротивления при данной площади; для круговых сечений, например - тонкостенные трубы. Эффективность использования материала можно оценить отношением моментов инерции или сопротивления полого сечения к соответствующим моментам сплошного при одинаковой площади:

(k) j = J/Jc, (k) w = W/Wc. Для трубы с alf = d/D :

alf 0 0.5 0.75 0.9

(k)j 1.00 1.67 3.59 9.53

(k)w 1.00 1.44 2.36 4.15

Эффективность прямоугольных сечений ниже, чем круглых и может быть оценена отнесением соответствующих моментов к моментам кругового:

(k) j = Jп/Jк, (k) w = Wп/Wк . Для прямоугольника с отношением длинной и короткой сторон bet = a/b > 1:

bet 1 1.5 2

(k)j 0.844 0.483 0.275

(k)w 0.881 0.513 0.321

9.2.5. Условия прочности при кручении такие же, как и при сдвиге (9.3) . Если материал плохо сопротивляется касательным напряжениям, происходит разрушение в нормальном или осевом сечении; если нормальным, cтержень разрушится по винтовой поверхности, наклоненной к оси стержня под углом 45 грд .

Глава 10. Работа стержней при поперечном и продольном изгибе

10.1. Общая характеристика напряженного состояния при изгибе

10.1.1. Основные определения. Изгиб - напряженное состояние, возникающее под действием моментов, находящихся в плоскости оси стержня или ей параллельных. Чистый изгиб возникает под действием моментов, поперечный - поперечных сил, продольныЙ - продольных.

10.1.2. Реакции в опорах. Зависят от способа закрепления стержня в опоре (рис.10.1) ; в шарнирах (рис.10.1, а, б) возможен поворот стержня, в заделках (рис.10.1, в, г) - невозможен. Значения реакций находят из условий равновесия стержня, а также из условий совместности деформаций в опорах, если этих уравнений недостаточно для статически неопределимых стержней.

10.1.3. Силовые факторы при изгибе. Внешние (рис.10.2) :

а) распределенная нагрузка q (x);

б) сосредоточенные силы P ;

в) изгибающие моменты M.

Внутренние:

а) поперечная сила Q - сумма всех сил слева от сечения;

б) изгибающий момент M - сумма всех моментов слева от сечения.

Знаки всех силовых факторов принимают в соответствии с рис.10.3.

Дифференциальные зависимости между силовыми факторами при изгибе получают, сравнивая выражения для M и Q в двух соседних сечениях на расстоянии

dx (рис.10.4) :

dM (x)/dx = Q (x); dQ (x)/dx = q (x) . (10.1)

10.2. Напряжения при изгибе

10.2.1. Нормальные напряжения. При изгибе волокна стержня, параллельные его оси, испытывают одноосное растяжение или сжатие. Через

центр масс сечения проходит нейтральный слой, волокна которого не растягиваются и не сжимаются, а только искривляются. Относительные деформации волокон, параллельных оси (рис.10.5) :

eps = del (dx) /dx = z/ro, (10.2)

где ro - радиус кривизны нейтрального слоя; z - расстояние до него.

Нормальные напряжения на основании закона Гука (8.6), линейно распределены по высоте сечения (рис.10.6) :

sig = E*z/ro ; (sig) max = E* (z)max/ro . (10.3)

10.2.2. Связь напряжений sig с внешним моментом M может быть получена из уравнения равновесия сечения:

M = int (sig*z*dS) S = (E/ro) *int[ (z**2) *dS]S = E*Jy/ro,

где Jy = int[ (z**2) *dS]S - момент инерции сечения относительно оси y.

Закон Гука для стержня с жесткостью E*Jy при изгибе:

1/ro = M/E*Jy . (10.4)

Связь напряжений с внешним моментом:

sig = M*z/Jy ; (sig) max = M* (z)max/Jy = M/Wy, (10.5)

где Wy = Jy/ (z)max момент сопротивления сечения относительно оси y.

10.2.3. Геометрические характеристики сечения при изгибе. Этомоменты инерции Jy и сопротивления Wy относительно оси y .

Для прямоугольного сечения высотой h и шириной b :

Jy = b*h**3/12 ; Wy = b*h**2/6 . (10.6)

Для круглого сечения с наружным D и внутренним d диаметрами:

Jy = (pi*D**4) *[1 - (alf) **4]/64 ;

Wy = (pi*D**3) *[1 - (alf) **4]/32, (10.7)

где alf = d/D .

Рациональные формы сечения - двутавры, швеллеры, Z - образные или трубчатые профили - имеют максимальный момент сопротивления при данной площади.

10.2.4. Касательные напряжения. Возникают в сечениях, нормальных к оси стержня, при наличии поперечных сил. Парные касательные - в сечениях, параллельных нейтральному слою. Их определяют из условия равновесия элементарного обьема (на рис.10.7 - 11'2'2) :

-int[sig1*dS] (S)отс + int[sig2*dS] (S)отс + tau*b*dx = 0 ;

(dM/dx) *[ (C)отс/Jy] = tau*b, (10.8)

где b - ширина сечения; (S) отс - площадь отсеченной части сечения;

(C)отс = int[z*dS] (S)отс - статический момент ее относительно нейтральной оси;

sig1, 2 = M1, 2*z/Jy ; M1 - M2 = dM .

Поскольку dM/dx = Qx,

tau = Qx* (C)отс/ (Jy*b) . (10.9)

Касательные напряжения при поперечном изгибе максимальны на нейтральной оси, а при z = (z) max равны нулю.

10.2.5. Условия прочности при изгибе. Нормальные напряжения при чистом изгибе находят по формулам (10.5) . При поперечном:

главные напряжения

sig1, 2 = 0.5*[sig +- (sig**2 + 4*tau**2) **0.5] ; (10.10)

касательные напряжения

tau1, 2 = 0.5* (sig1 - sig2) =

= +- 0.5*[ (sig**2 + 4*tau**2) **0.5] . (10.11)

Условия прочности:

sig1, 2 <= (sig) p ; tau1, 2 <= (tau) p . (10.12)

10.3. Деформации при изгибе

10.3.1. Дифференциальное уравнение изогнутой оси стержня. Его получают из выражения (10.4), учитывая, что для уравнения изогнутой оси

z = z (x) кривизна может быть выражена соотношением:

kappa = 1/ro = (d2z/dx2) /[1 + (dz/dx) **2]**1.5 .

Поскольку в общем случае изгибающий момент M (x) и момент инерции Jy (x) переменны по длине стержня, уравнение изогнутой оси имеет вид:

(d2z/dx2) /[1 + (dz/dx) **2]**1.5 = M (x)/E*Jy (x) . (10.13)

Для малых прогибов стержня величиной dz/dx = tet - углом поворота стержня пренебрегают и получают приближенное уравнение изогнутой оси стержня при изгибе:

d2z/dx2 = M (x)/E*Jy (x) . (10.14)

10.3.2. Определение деформаций. Большинство методов определения деформаций при изгибе сводится к интегрированию уравнения (10.14), а при необходимости высокой точности результатов - (10.13) с учетом граничных условий. Решения для стержней, нагруженных сосредоточенной силой (рис. 10.8), моментом (рис.10.9), равномерной нагрузкой (рис. 10.10), дают следующие выражения (при Jy = const) :

для силы P

(z)max = - P*l**3/ (3*E*J) ; (tet) max = P*l**2/ (2*E*J) ; (10.15)

для момента M

(z)max = M*l**2/ (E*J) ; (tet) max = - M*l/ (E*J) ; (10.16)

для распределенной нагрузки

(z)max = - q*l**4/ (8*E*J) ; (tet) max = q*l**3/ (6*E*J) . (10.17)

Деформации при сложном нагружении стержня можно представить как сумму деформаций от распределенных нагрузок, сосредоточенных сил и моментов, причем реактивные силы и моменты в опорах рассматривают наравне с другими внешними силовыми факторами.

10.4. Продольный изгиб и устойчивость стержня.

10.4.1. Потеря устойчивости. У продольно сжатых стержней может наступить потеря устойчивости - катастрофическое нарастание деформаций и последующее разрушение под воздействием сил, которые настолько малы, что разрушения от сжатия произойти не может. Это происходит тогда, когда ось стержня имеет первоначальное искривление, или продольная сила действует с эксцентриситетом - появляется изгибающий момент, который разрушает стержень (рис.10.11) .

Уравнение продольного изгиба:

E*J* (d2z/dx2) = M (x) = - P*z . (10.18)

Решение этого уравнения при k = (P/E*J) **0.5 :

z (x) = C1*cos (k*x) + C2*sin (k*x) . (10.19)

Из граничных условий z = 0 при x = l следует: C1 = 0, k*l =

= pi*n, где n = 1, 2, 3 ... Из (10.19) получают выражение для критической силы, вызывающей потерю устойчивости:

(P)кр = E* (J)min* (pi*n/l) **2 . (10.20)

Для n = 1 получают минимальное значение критической силы (P) кр; если ввести промежуточные опоры по длине стержня, можно получить (P) кр при n = 2, 3 и т.д. (рис.10.12) .

10.4.2. Приведенная длина стержня. Влияние закрепления концов на устойчивость учитывают с помощью коэффициента приведения длины mju (рис.

10.13) . В зависимости от характера закрепления концов на длине стержня возникает различное число полуволн синусоиды, что и учитывает коэффициент mju. Поэтому критическая сила

(P)кр = (pi) **2* (E*J) min/ (mju*l) **2 . (10.21)

10.4.3. Гибкость стержня. Формула (10.21) справедлива, пока выполняется закон Гука, т.е. пока критическое напряжение в стержне не превышает предела пропорциональности (sig) пц :

(sig) кр = (P) кр/S = pi**2* (E*J) min/[S* (mju*l) **2 =

= pi**2*E/lam**2 <= (sig) пц, (10.22)

где lam = mju*l/i - гибкость стержня; i = (Jmin/S) **0.5 - наименьший главный радиус инерции сечения стержня.

Предельная гибкость стержня, при которой наступает потеря устойчивости:

(lam) пр >= pi*[E/ (sig) пц]**0.5 . (10.23)

Если lam меньше этого значения, стержень разрушается от сжатия, потери устойчивости не будет. Считают, что для пластичных материалов (sig) кр = (sig) т, для хрупких (sig) кр = (sig) в, если lam < (lam) пр.