Смекни!
smekni.com

Электро-дуговая и плазменная сварка (стр. 2 из 5)

Для удаления окисной пленки и поверхностных загрязнений зону вокруг любого дефекта (повреждения) необходимо зачистить до металлического блеска. Это лучше всего сделать ручной электрической и пневматической шлифовальной машиной.

В местах, не доступных для механической обработки, поверхность вокруг повреждения до металлического блеска стальными щетками, специально заточенными шаберами или другими инструментами.

При подготовке к сварке тонких малозаметных трещин зачистку производят не вдоль, а поперек трещин. (рис. 1). При такой зачистке риски, образованные на метал

ле от шлифовального круга, не совпадают с направлением трещины, а пыль, осаждающаяся на трещину, выявляет ее контуры даже в тех местах, где простым глазом можно трещину и не заметить.

Рис.1.

Схема зачистки поверхности круга вокруг трещины перед заваркой. 1 – зона зачистки, 2 – направление движения шлифовального круга, 3 – трещина.

Во всех случаях ширина зачистки должна быть в два – три раза больше ширины накладываемого шва. При заварке трещин в стенках рубашки охлаждения, когда шов предполагается герметизировать эпоксидным клеем, зачистку по обеим сторонам трещины производят на общую ширину не менее 30 мм. Малозаметные трещины необходимо еще накернить, чтобы не потерять их во время сварки из виду.

Если концы трещин расположены в местах где возможны значительные внутренние напряжения детали, то их необходимо засверлить. Это нужно для предупреждения дальнейшего распространения трещины во время сварки и при работе детали.

При толщине стенки (металла) в местах прохождения трещины более 5 мм. ее необходимо разделить, т.е. вдоль ее оси прорезать канавку. Подготовку трещин и других дефектов к заварке лучше всего выполнять непосредственно перед заваркой. Пробоину чаще всего заделывают наложением внахлест заплат. Ее вырезают толщиной 2.5 – 3 мм. Края заплат должны перекрывать пробоину не менее чем на 10 мм. В местах прилегания заплаты поверхность детали необходимо зачистить до металлического блеска. Перед приваркой заплаты по ее середине необходимо немного постучать молотком с тем, чтобы придать ей выпуклость для компенсации разности линейного расширения чугуна и стали при нагреве детали. Края заплаты необходимо плотно подогнать к поверхности детали.

Подготовка отверстий к заварке заключается в зачистке поверхности вокруг них, рассверливании до полного снятия старой резьбы. Глубокие резьбовые отверстия необходимо также рассверлить и разделать на конус с тем, чтобы можно было расплавить металл на всю глубину резьбы. Перед устранением сваркой любых повреждений, где металл находился в зоне соприкосновения с маслом, место сварки полезно подогреть пламенем газовой горелки до температуры 200 – 220 С. Эту операцию проводят быстрыми перемещениями горелки вдоль завариваемого повреждения в течение 1 – 2 мин.

3.1.5. Технология электродуговой сварки.

Основными элементами режима дуговой сварки являются: род, полярность и сила тока, диаметр электрода, напряжение дуги и скорость сварки. Увеличение тока увеличивает, а уменьшение – уменьшает глубину провара. Ширина шва зависит от скорости сварки: увеличение скорости уменьшает ширину шва, а уменьшение скорости увеличивает ее. Уменьшение диаметра электрода при этом тоже повышает плотность, тока и уменьшает подвижность дуги, что увеличивает глубину провара и сокращает ширину шва. При сварке стальных деталей необходимо поддерживать возможно короткой.

Хорошее качество сварки и наплавки стальных деталей во многом зависит от химического состава металла, от содержания в нем углерода и легирующих примесей. Многослойную заварку или наплавку этих сталей ведут так, чтобы при наложении последующего слоя предыдущий не успевал охладиться до температуры ниже 200 С. Углеродистые и низколегированные стали сваривают и наплавляют преимущественно электродами типов Э42 и Э46 с рутиловым покрытием марок АНО – 4, АНО – 5, ОЗС – 4 и др.

При сварке деталей из конструкционных сталей наилучшее качество дают электроды типа Э42А. С фтористокальциевым покрытием УОНИ – 13/45, ОЗС – 2. Для наплавки быстроизнашивающихся поверхностей работающих в абразивной среде, когда необходима их повышенная твердость, лучше применять электроды марок Т – 590, Т – 620, Х – 5. Шов получается менее пластичный , но с твердостью порядка НРС 56 – 62 без термообработки.

Детали с цементированными поверхностями и высокой твердостью восстанавливают электродами ОЗН – 400У и ЦН – 4 (кулачки распредвала, тарелки клапана и др.). Эти электроды обеспечивают твердость слоя НАС 45…55 без керамической обработки. При наплавке распределительный вал частично погружают в воду, чтобы уменьшить коробление и избежать нарушения термической обработки участков, расположенных близко к зоне сварки.

Стальные детали толщиной 2 мм до сотых долей миллиметра успешно сваривают дуговой сваркой неплавящимися электродом с применением специальных транзисторных источников питания типа ПА – 4, АП – 5, АП – 6. Они позволяют вести сварку постоянным импульсом тока прямой и обратной полярности. Пределы регулирования тока в этих аппаратах от 0,05 до 300А.

Баки, автоцистерны и другие сосуды из – под топлива перед сваркой тщательно очищают от следов нефтепродуктов или заполняют отработавшими газами карбюраторных двигателей, предварительно очистив их пропусканием через воду.

Восстановление чугунных деталей сваркой – трудный процесс, обуславливаемый химическим составом чугуна, его структурой и особыми механическими свойствами, которые во многом зависят от того в каком виде находится углерод. Если большая часть углерода содержится в связном состоянии в виде цемента (Fe3C), то такой чугун более светлого цвета, очень тверд, хрупок и не поддается механической обработке. В сером чугуне часть углерода находится в структурно – свободном состоянии в виде пластичных включений графита. Серый чугун также хрупок, но достаточно мягок и легко поддается обработке. Приближенно все способы сварки чугунных деталей делят на два вида: горячую и холодную.

Горячая сварка. Деталь перед сваркой подогревают, а после медленно охлаждают. Лучшая температура обеспечивающая высокое качество сварки, 600 – 650 С. Скорость охлаждения от начала затвердевания наплавленного металла до 600С должна быть не более 4 С в секунду. При большей скорости охлаждения ухудшается процесс графинизации и проходит отбеливание чугуна. Мелкие детали подогревают до температуры 150 – 200С. Подогрев и охлаждение ведут медленно и равномерно.

Заварку дефекта ведут чугунными электродами больших диаметров (12 – 14 мм) на повышенном сварочном токе (1200 – 1300А), при большой ванне жидкого металла, чтобы создать необходимые условия для удаления газов и неметаллических включений из расплава. Сварку ведут только в нижнем положении шва и без перерыва до полного заполнения трещин. Перед сваркой концы трещин засверливают и вдоль трещин делают разделку швов. Чтобы предупредить растекание жидкого чугуна, их место заварки заформовывают графитными или угольными пластинками. Горячая сварка чугуна очень трудоемка, но обеспечивает хорошее качество наплавленного металла.

Холодная сварка чугуна. Для сварки чугуна стальными электродами применяют многослойную плавку электродами, так называемый способ отжигающих валиков.

Вдоль трещин чугунной детали наносят V – образную глубокую разделку кромок и по обе стороны снимают линейную корку на расстоянии, примерно равной ширине разделки. На первый сварочный валик длиной 40…50 мм. сразу же накладывают второй, отжигающий валик. При наложении второго валика первый больше прогревается и затем остывает с меньшей скоростью. Значительная часть цемента распадается, выделяется график, а закаленная часть шва частично отпускается и нормализуется. Верхний (отжигающий) валик уже меньше подвержен закалке, в результате чего резко снижается твердость всего шва и частично снимаются остаточные напряжения.

Для повышения надежности заварки трещин в сильно нагруженных деталях (КПП, трансмиссия и др.) на раздельных кромках трещин часто ставят в шахматном порядке на резьбе упрочняющие стальные шпильки или скобы. Диаметр шпилек рекомендуется брать в пределах 0.15…0.2 толщины стенки, но не менее диаметра электрода. Расстояние между шпильками берут равным 4…6 диаметра, глульину посадки 2 диаметра, расстояние от кромок не менее 1.5…2 диаметра шпилек. Сначала шпильки обравнивают кругом, а затем наплавляют весь сплошной шов. Первые слои в разделке трещин или обварку упрочняющих шпилек выполняют специальным электродом ЦЧ – 4, а все последующие электродами типа УОНИ – 13/55 или другими из стержней малоуглеродистой стали. Этот способ сварки трудоемок, малопроизводителен. Поэтому, когда не нужна высокая прочность сварочного шва, применяют сварку биметаллическими электродами.

Сварка чугуна электродами на основе никеля ПАНЧ – 11 и ЦЧ – 3А обеспечивают достаточно высокую прочность, отсутствие трещин и хорошую обрабатываемость наплавленного металла.

Сварку чугуна электродами на основе меди ведут во всех случаях, когда не требуются высокая прочность сварного шва. Медно – железные электроды 034 – 2 изготавливают из медного стержня с фтористокальциевым покрытием, в которое добавляют 50% железного порошка. Слой, наплавленный электродами 034-2, представляет собой медь, насыщенную железом с вкраплением закаленной стали, имеющей большую твердость. По границе шва отдельными участками располагаются зоны отбеливания. Несмотря на достаточно высокую твердость, шов можно обрабатывать твердым инструментом.

Медно – никелевые электроды МНЧ – 2 представляет собой стержни из монель – металла (28% меди, 2,5% железа, 1,5 марганца, остальное никель) или из сплава МНМц (40% никеля, 1,5%марганца, остальное медь). Никель этих электродов не образует соединений с углеродом, поэтому наплавленный шов имеет малую твердость и почти отсутствует зона отбеленного чугуна. Наплавленный шов легко поддается обработке, но прочность его низкая, поэтому медно – никелевые электроды часто применяют в сочетании с электродами ОЗЧ – 2. Первый слой, чтобы обеспечить плотность, и последний, чтобы улучшить обработку, наносят электродами МНЧ – 2, а остальное заплавляют электродами ОЗЧ – 2.