Смекни!
smekni.com

Климат голоцена по естественнонаучным данным и его отражение в исторических хрониках (стр. 2 из 4)

При общей характеристике климата голоцена мы в основном будем пользоваться информацией из источников [3, 7, 9, 11, 12, 13, 14, 17, 21, 23, 42, 47], используя при этом селективный принцип: в обзор включены только те данные, которые получены естественнонаучными методами, без отсылок к гуманитарно-историческим экивокам.

Голоцен, как уже отмечалось выше, самый молодой и короткий отдел четвертичного периода. Он наступил 10 - 12 тыс. лет назад, и в областях древнего оледенения умеренных широт в общем совпадает с постледниковым временем. Переход от плейстоцена к голоцену ознаменовался таким событием глобальной значимости, как распад последнего оледенения суши. Температура в умеренных широтах повысилась на 6-12°С по сравнению с температурным минимумом плейстоцена; увеличилась испаряемость с поверхности океанов и морей, и за счет этого в общем возросла влажность, хотя ее пространственное распределение, в отличие от распределения температур, было (и остается) весьма неравномерным, а некоторые районы с потеплением стали, наоборот, гораздо более засушливыми, чем в плейстоцене.

По своему климату голоцен представляет типичную межледниковую эпоху, которая мало чем отличается от более древних межледниковий; главная тенденция изменения ее климата - переход от холодных условий конца плейстоцена к теплому климатическому оптимуму (максимум потепления - около 6 тыс. лет назад), когда температура в Европе была в летний период в среднем на 2-3°С выше современной, а затем к новому похолоданию, известному в научной литературе под названием Малый Ледниковый Период (грубо - последние 5-9 веков). В целом, климат и окружающая среда на протяжении голоцена были достаточно стабильны, явно выраженный тренд отсутствовал, ледники, достигнув нового равновесия после достаточно быстрой деградации на стыке плейстоцена и голоцена, вплоть до середины ХХ века сохранялись главным образом в квазистационарном состоянии, однако в МЛП отмечался их рост (по крайней мере, в Северном Полушарии), и температура воздуха значительно понижалась. С наступлением индустриальной стадии развития общества, антропогенный фактор стал оказывать достаточно ощутимое влияние на климатическую ситуацию, хотя масштабы этой связи все еще не определены достаточно четко, и среди климатологов продолжаются дискуссии: что является главным фактором глобального потепления последних 50-100 лет - воздействие человечества или какие-то природные механизмы. Иногда отрицается сам факт глобального потепления, однако, все же надо признать, что истекший ХХ век был гораздо теплее предшествовавшего ему МЛП, и кроме того, только в ХХ-м веке ледники, сохранявшиеся почти неизменными в течение всего голоцена, практически повсеместно начали деградировать.

Попробуем теперь несколько детализировать картину климатических флуктуаций голоцена для того этапа, который традиционно считается "историческим", т.е. примерно с 5 тыс. лет назад. Наиболее надежным источником информации в данном случае являются огромные массивы льда полярных ледниковых покровов - своего рода природные "винчестерские диски", хранящие информацию об изменениях температурных и влажностных условий за последние полмиллиона лет [см., например, 10, 27]. Для реконструкции климата Северного Полушария на коротких (в несколько тысячелетий) промежутках времени уместно использовать климатический сигнал, выделенный при анализе кернов Гренландского ледникового щита [42].

РЕКОНСТРУКЦИЯ ТЕМПЕРАТУРЫ ПО СОДЕРЖАНИЮ СТАБИЛЬНЫХ ИЗОТОПОВ В ЛЕДЯНЫХ КЕРНАХ

В центральных зонах крупных ледниковых щитов температура воздуха в течение всего года сохраняется отрицательной, причем намного ниже нулевой отметки шкалы Цельсия (среднегодовые температуры ниже -25°С). Этим обусловлен тот факт, что таяние в этих областях отсутствует, и происходит лишь накопление выпадающего снега или намерзающих осадков с последующим их оседанием и рекристаллизацией, приводящей к превращению снега в фирн (переходную породу между снегом и собственно ледниковым льдом, состоящую из связанных между собой ледяных зерен), а затем, на глубине 50-150 м от поверхности - в лед. Пробурив ледниковый щит, можно проследить в колонке льда хорошо сохранившиеся годовые слои, уверенно отделяемые друг от друга по летним и зимним отложениям, которые различаются по структуре, плотности и запыленности. Такое отделение не представляет особого труда для последних нескольких тысяч лет, однако с глубиной проводить его все сложнее, так как из-за давления вышележащих слоев различия сглаживаются. В этом случае для датирования более древнего льда используют численное моделирование его растекания, исходными данными при котором служат скорость накопления снега, температура и вязкость льда, скорость его движения и рельеф ложа [4, 12, 13, 18, детали также в сборнике 42].

В первую очередь в извлеченном из скважины ледяном керне определяется содержание стабильных изотопов 18O и 2O по отношению к наиболее распространенным изотопам O и 16O. Отношения 2O/O и 18O/16O выражаются величинами d в тысячных долях (‰) в сравнении со "стандартом средней океанической воды" (SMOW). Эти величины характеризуют климатические условия выпадения осадков, сформировавших исследуемый слой ледникового льда. Чем более низкая температура образования осадков, тем меньше значения этих показателей, и наоборот. Увеличение высоты выпадения осадков и расстояние от источника влаги до места их выпадения содействует уменьшению значений d 2O (или D) и d 18O [4, 18]. В Восточной Антарктиде понижение относительного содержания изотопа d 18O на 1 ‰ соответствует похолоданию на 1.5°С, а уменьшение D на 6 ‰ - понижению температуры на 1°С. Используя эти соотношения, изотопную кривую легко преобразовать в температурную [12]. Метод был предложен В.Дансгором (W.Dansgaard) [28, 29, 30] и С.Эпстейном (S.Epstein) [33] после того, как Дансгор в 1953 г. установил высотный эффект 18O в атмосферных осадках, а Эпстейн в 1956 г. подтвердил это прямыми изотопными исследованиями. Позднее [30] Дансгор предложил эмпирическое уравнение, описывающее связь между среднегодовыми температурами у поверхности (t) и d 18O:

d 18O = 0.7 t – 13.6

Сравнение изотопных кривых d 2O и d 18O для кернов из разных скважин показало хорошую корреляцию между этими показателями; они коррелируют и с температурами поверхностных вод океана, реконструированными по составу фауны в донных отложениях [26, 43, 44], и с температурами в Европе по данным спорово-пыльцевых анализов [26, 48] и геоморфологических исследований реликтов перигляциальных явлений [26, 38]. Также была обнаружена связь между изотопной кривой из гренландской скважины Crete и температурами в Англии и Исландии, которые реконструированы для последних 300-500 лет по надежным записям прямых наблюдений за природными процессами [26]. Все это дает основания рассматривать гренландские ледниковые керны в качестве чувствительного естественного регистратора температурных флуктуаций в Северном Полушарии, - и в Европе в частности. В нашем дальнейшем исследовании мы будем в основном опираться на данные по двум наиболее известным скважинам из пробуренных в Гренландии за последние четверть века - GRIP [31, 32, 34, 35, 36] и GISP2 [27, 35, 39, 45, 46, 47].

ТЕМПЕРАТУРНЫЕ ФЛУКТУАЦИИ ПОСЛЕДНИХ 5000 ЛЕТ

На рис.1 представлен график изменения d 18O в слоях ледникового льда со скважины GISP2 в центральной Гренландии. По оси абсцисс отложены календарные годы, по оси ординат - относительное содержание изотопа кислорода в ‰.

Рис.1. Распределение изотопа кислорода d 18O в верхней части керна из скважины GISP2 (последние 5000 лет); по данным [35, 39, 45, 46, 47] . Жирная линия - значения, сглаженные по 50-летиям.

Из анализа этой изотопной кривой мы можем сделать определенные выводы о климатической ситуации в различные периоды "исторического" времени. Так, 5 тыс. лет назад температуры были на уровне современных, а затем наступило некоторое похолодание, осложненное рядом положительных осцилляций. Начиная с 2500 лет до н.э. и вплоть до пятого века новой эры эпоха была крайне теплой, с рядом незначительных похолоданий в районе 2000 г. до н.э., 1500 г. до н.э. и так далее, причем, в это время температура практически не опускалась ниже современной, а в целом было даже теплее, нежели сейчас. Наиболее холодным и резким явился, по всей видимости, локальный минимум II в. н.э., вслед за которым, после примерно трехсотлетнего теплого участка, началось существенное падение температуры, достигшее экстремальных значений в Малый Ледниковый Период, в XVI-XVII вв. Однако, на кривой в эту холодную эпоху отмечается положительная аномалия IX-XII вв., когда температуры снова оказались на уровне современных. В последнем, XX столетии, наблюдается стабильное потепление.Сходные выводы можно сделать, рассмотрев изотопную кривую по скважине GRIP [31, 32, 34, 35, 36]. Из графиков совершенно однозначно следует, что эпоха XXV в. до н.э. - IV-V вв. н.э. была весьма теплой, но затем ее сменило глобальное похолодание, продолжавшееся вплоть до начала прошлого века. Таким образом, картина температурных флуктуаций достаточно ясна. Изменения же влажности, как подчеркивалось выше, носят метахронный характер в разных областях, и поэтому их мы будем рассматривать ниже исключительно в локальном контексте.

КЛИМАТ В АНТИЧНЫХ И СРЕДНЕВЕКОВЫХ НАРРАТИВАХ

Весьма любопытные данные об отражении климатических условий в древних письменных источниках приводит академик В.М.Котляков [12]. Около 2.5-2 тыс. лет назад климат в Европе был якобы очень холодным. Об этом сохранилось свидетельство Вергилия, сообщавшего, что в зимнее время сугробы из снега и льда на Черноморском побережье современной Украины достигали семь локтей высоты, а также Овидия, который отбывал ссылку на территории нынешней Румынии и жаловался на крайнюю жестокость зим - в ту эпоху якобы полностью покрывались льдом низовья Дуная. На побережье Северной Атлантики около 2 тыс. лет назад также отмечались целые "века страшных зим".