Смекни!
smekni.com

Геометрия в пространстве (стр. 3 из 6)

· Если АВ =kCD, а A¹,B¹,C¹ и D¹- проекции точек A,B,C и D, то B¹= kD¹.

Черта здесь означает направленные отрезки (векторы), а равенство — совпадение не толь­ко длин, но и направлений (рис. 7). Таким об­разом, если задать изображения точек А и В, то будут однозначно определены и изображения всех точек Х прямой АВ, поскольку множитель k в равенстве AX = kAB на параллельной про­екции и оригинале одинаков. Аналогично, по изображениям трёх точек, не лежащих на од­ной прямой, однозначно восстанавливаются изображения всех точек проходящей через них плоскости, а задав изображения четырёх точек, не находящихся в одной плоскости, мы предопределяем изображения всех точек про­странства.

В то же время изображением данной трой­ки точек, т. е. треугольника, может служить тре­угольник любой заданной формы. В этом легко убедиться: проведём через сторону Поданного треугольника
ЛВС любую плоскость а, постро­им в ней треу-гольник АВС нужной формы и спроектируем треугольник АВС на α вдоль пря­мой l = СС¹ (рис. 8). Взяв в качестве А В С равно­бедренный прямоу-гольный треугольник и до­строив его до квадрата ABCD, увидим, что в параллельной проекции квадрат легко превращае-тся в любой параллело-грамм. Более того, можно доказать, что изображе-нием любой данной треу-гольной пирамиды могуг быть лю­бые четыре точки, не лежащие на одной пря­мой, вместе с соединяющими их отрезками.

Правильно выбранное изображение помо­гает решать задачи. Найдём, например, отно­шения, в которых треугольное сечение A¹BD нашего куба (рис. 9, а) делит отрезок, соединяющий середины Р и Q рёбер AD и В¹С¹. По­смотрим на куб со стороны бокового ребра ВВ¹, а точнее говоря, спроектируем куб вдоль прямой BD па плоскость АА¹С¹С. Понятно,чтопроекцией будет сам прямоугольник АА¹С¹С с проведённым в нём отрезком, соединяющим середины оснований (точки В и D совпадут;

рис. 9, б); рассматриваемое сечение превра­тится в отрезок (рис. 9, б), а точки Р и Q станут серединами отрезковА1)и ВiCi. Очевидно, что на нашем рисунке A¹Q = 3PB, а значит, РМ: MQ = 1 : 3. В силу основного свойства параллельной проекции,эторавенство верно и в пространстве. Та же про­екция позволяет найти отношение между ча­стями любого проведённого в кубе отрезка,накоторые он рассекается плоскостью A¹BD: в частности, отрезок KQ, где К — середина АВ. вновь делится ею в отношении 1 : 3, а диаго­наль АС, — в отношении 1:2.

Ещё эффектнее решения планиметриче­ских задач, которые получают, «выходя в про­странство», т. е. представляя данную плоскую фигуру в виде изображения некоего пространственного объекта. Вот одна из таких задач, требуется построить треугольник с вершина­ми на трёх данных лучах ОА, 0В и ОС с общим началом О так, чтобы его стороны проходили через три данные внутри углов АОВ, ВОСк СОАточки Р, Q и R.

Это очень трудная задача. Но если мы дога­даемся посмотреть на её чертёж (рис. 10, а) как на изображение трёхгранного угла с тремя точками на его гранях, то, конечно, поймем, что имеем дело с задачей на построение сечения этого угла плоскостью PQR. Решение задачи приводится на рис 10, б; кстати сказать, оно поясняет и основной прием построения сечений. Из произвольной точки Е луча ОС проектируем данные точки R и Q на плоскость ОАВ; получаем точки R¹ и Q¹. Плоскость искомого сечения пересекает плоскость ОАВ по прямой МР. Дальнейшее очевидно.

IV. Перпендикулярность. Углы. Расстояния.

До сих пор мы, по существу, нигде не пользовались такими важными геометрическими понятиями, как расстояния и углы. Даже в нашем кубе нам достаточно было только того, что его грани- параллелограммы, равенства всех их сторон и углов на самом деле не требовалось. Чтобы иметь возможность изучать свойства куба и других пространственных фигур во всей полноте, нужны соответствующие определения. Прежде всего, расширим понятие перпендикулярности, известное из планиметрии.