Смекни!
smekni.com

Геометрия в пространстве (стр. 4 из 6)

Если прямая пересекает плоскость в этой плоскости, проходящей через точку Р, то говорят , что данные прямая и плоскость перпендикулярны.

Например, ясно, что ребро АА¹ нашего куба перпендикулярно основанию АВСD. Но как проверить, что это ребро действительно перпендикулярно любой прямой, лежащей в основе и проходящей через А? Оказывается, достаточно того, что АА¹ составляет прямые углы с двумя из них – АВ и АD: согласно признаку перпендикулярности прямой и плоскости,

· Если прямая l перпендикулярна двум пересекающимся прямым a и b, то она перпендикулярна плоскости, содержащей a и b.

Причём здесь не обязательно предполагать, что прямые a и b пересекают l: считают, что скрещивающиеся прямые перпендикулярны, если перпендикулярны параллельные им пря­мые, проходящие через произвольно взятую точку, в частности через точку пересечения l с плоскостью. Так что теперь можно сказать, что прямая, перпендикулярная плоскости, перпен­дикулярна любой лежащей в этой плоскости прямой. Справедлива такая теорема:

· Через данную точку в пространстве можно провести одну и только одну плоскость, перпендикулярную дан­ной прямой, а также одну и только одну прямую, перпендикулярную данной плоскости.

Параллельная проекция на плоскость вдоль перпендикулярной ей прямой называется ортогональной (т. е. прямоугольной) проекцией на данную плоскость. Обычно, когда говорят просто «проекция», имеют в виду именно ор­тогональную проекцию. Она обладает всеми общими свойствами параллельной проекции. Но у неё есть и специфические свойства, их можно использовать при решении задач о расстояниях и углах в пространстве.

Из признака перпендикулярности прямой и плоскости выводится очень простая, но важная теорема о трёх перпендикулярах (рис. 11):

·

Наклонная a к плоскости перпендикулярна к прямой l в этой плоскости тогда, когда её проекция а¹ на плоскость перпендикулярна l.

Наклонной к плоскости называют любую пересекающую её, но не перпендикулярную ей прямую. Оба условия в этой теореме равно­сильны тому, что плоскость, содержащая а и а', перпендикулярна прямой /.

Применим обе теоремы к кубу (рис. 11). Проекция АС его диагонали АC¹ на основание перпендикулярна диагонали основания BD; по теореме о трёх перпендикулярах, и сама диаго­наль АС¹ перпендикулярна BD. По такой же причине перпендикулярны АС¹ и А¹В. Отсюда следует, что диагональ перпендикулярна «тре­угольному сечению» A¹BD.

В стереометрии помимо обычных плоских

углов приходится иметь дело ещё с тремя ви­дами углов. Угол между скрещи-вающимися прямыми, по определению, равен углу между пе­ресекающимися прямыми, которые им парал­лельны. Угол между прямой а и плоскостью о. равен углу между прямой а и её проекцией а' на плоскость (рис. 10), а если прямая и пло­скость перпендикулярны, его принимают рав­ным 90°. Это наименьший из углов между пря­мой а и любой прямой в плоскости а. Угол между пересекающимися плоскостями измеря­ется углом между перпендикулярами, проведён­ными в этих плоскостях к линии их пересече­ния (рис. 13). Все названные углы принимают значения в промежутке от 0
до 90°.

Найдём, например, угол между диагоналями А¹В и В¹С граней нашего куба (рис. 14). Заме­ним прямую В¹С на параллельную ей диагональ A¹D противоположной грани; искомый угол равен углу BA¹D, т. е. 60° (треугольник BA¹D равносторонний). Угол между диагональю АС¹ и основанием куба равен углу САС¹ между прл* мой ас¹ и её проекцией АС на основание, т.е. arctg (C¹C/AC) = arctg (1/√2]. А угол между пло­скостями BDA¹ и BDC¹ (рис. 14) равен углу А¹МС¹, где М — середина BD, так как прямые МА¹ и МС¹ лежат в этих плоскостях и перпендикулярны их линии пересечения BD (несложное вычисление даёт arccos (1/3)).