Смекни!
smekni.com

Приложения производной (стр. 3 из 10)

Теорема 1.Дифференцируемая и возрастающая в интервале( a, b )функцияf (x)имеет во всех точках этого интервала неотрицательную производную.
Теорема 2.Дифференцируемая и убывающая в интервале( a, b )функцияf (x)имеет во всех точках этого интервала неположительную производную.

Пусть данная непрерывная функция убывает при возрастании x от x0 до x1, затем при возрастании x от x1 до x2 - возрастает, при дальнейшем возрастании x от x2 до x3 она вновь убывает и так далее. Назовем такую функцию колеблющейся.
График колеблющейся функции показан на рисунке 3. Точки A, C, в которых функция переходит от возрастания к убыванию, так же, как и точки B, D, в которых функция переходит от убывания к возрастанию, называются точками поворота или критическими точками кривойy = f (x), а их абциссы - критическими значениями аргументаx
В той точке, где функция переходит от возрастания к убыванию, ордината больше соседних с ней по ту и другую сторону ординат. Так, ордината точки A больше ординат, соседних с ней справа и слева и достаточно к ней близких, т.е. значение функции в точке A, абсцисса которой равна x0, больше значений функции в точках, абсциссы которых достаточно близки к x0 : f (x0) > f (x0+x).

На рисунке 4(a) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она возрастает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - убывает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)³f (x).

Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется максимальным значением функции f (x) или просто максимумом.
Определение 3.Максимумом функцииf (x) называется такое значение f (x0) этой функции, которое не меньше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x,

принадлежащих некоторой достаточно малой окрестности точки x0 .
Так, на рисунке 3 показаны два максимума: f (x0) и f (x2) .
В той точке, где функция переходит от убывания к возрастанию, ордината меньше ординат в достаточно близких к ней точках, расположенных справа и слева от нее. Так ордината точки B меньше ординат в точках соседних и достаточно близких к точке x1 справа и слева. Значение функции в точке, абсцисса которой равна x1 , меньше значений функции в точках, абсциссы которых достаточно мало отличаются от x1 : f (x1) < f (x1+Dx).

На рисунке 4(б) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она убывает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - возрастает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)£f (x).

Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется минимальным значением функции f (x) или просто минимумом.
Определение 4.Минимумом функцииf (x) называется такое значение f (x0) этой функции, которое не больше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой


достаточно малой окрестности точки x0 .
Так, на рисунке 3 показаны два минимума: f (x1) и f (x3) .
По определению наибольшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)³f (x), а наименьшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)£f (x).
Из этих определений следует, что функция может достигать своего наибольшего или наименьшего значения как внутри интервала [ a, b ] , так и на его концах a и b. Здесь же максимум и минимум функции f (x) были определены соответственно как наибольшее и наименьшее значения в некоторой окрестности точки x0 .
Если в точке x0 функция f (x) достигает максимума или минимума, то говорят, что функция f (x) в точке x0 достигает экстремума (или экстремального значения).
Функция f (x) может иметь несколько экстремумов внутри интервала [ a, b ], причем может оказаться, что какой-нибудь минимум будет больше какого-нибудь максимума. Таким образом, наибольшее значение функции f (x) на интервале [ a, b ] - это наибольший из экстремумов функции внутри этого интервала и наибольшее из значений функции на концах интервала.
Аналогично наименьшее значение функции f (x) на интервале [ a, b ] - это наименьший из экстремумов функции внутри этого интервала и наименьшее из значений функции на концах интервала.

Например функция, изображенная на рисунке 3, достигает наибольшего значения f (x) в точке x2 , наименьшего - в точке x1 интервала [ x0, x3 ]. На рисунке 5 изображена функция, имеющая бесконечное число минимумов и максимумов.

Теорема 3 (необходимый признак экстремума). Если функция f (x) имеет в точке x0 экстремум, то ее производная в данной точке или равна нулю или не существует.
Но функция f (x) может иметь экстремумы и в тех точках x0, в которых ее производная не существует. Например функция y = | x | в точке x0 = 0 не дифференцируема, но достигает минимума. Точки такого типа называют угловыми. В них кривая не имеет определенной касательной.

Рис. 6

На рисунке 6 изображена функция f (x), не имеющая в точке x0 производной [f' (x0) = ¥] и достигающая в этой точке максимума. При x®x0 и x < x0 f' (x)® +¥, при x®x0 и x > x0 f' (x)® -¥. Значит касательная кривой y = f (x) при x = x0 перпендикулярна к оси Ox. Такие точки называются точками возврата кривой y=f(x).
Таким образом, необходимым признаком существования в точке x0 экстремума функции f (x) является выполнение следующего условия: в точке x0 производная f' (x) или равна нулю, или не существует.
Этот признак не является достаточным условием существования экстремума функции f (x) в точке x0 : можно привести много примеров функций, удовлетворяющих этому условию при x = x0 , но, однако, не достигающих экстремума при x = x0.
Например, производная функции y = x3 при x0 = 0 равна нулю, однако эта функция при x0 = 0 не достигает экстремального значения.

6.2.Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции.

Теорема 4.Если функция f(x) имеет в каждой точке интервала (a, b) неотрицательную производную, то она является неубывающей функцией в этом интервале.
Теорема 5. Если функция f(x) в каждой точке интервала (a, b) имеет неположительную производную, то она является невозрастающей функцией в этом интервале.

Теорема 6. (первый достаточный признак экстремума). Если производная f '(x) функции f(x) обращается в нуль в точке x0 или не существует и при переходе через x0 меняет свой знак, то функция f(x) имеет в этой точке экстремум (максимум, если знак меняется с "+" на "-", и минимум, если знак меняется с "-" на "+").
Теорема 7. (второй достаточный признак существования экстремума функции). Если в точке x0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f ''(x) отлична от нуля, то в точке x0 функция f(x) достигает экстремума (минимума, если f ''(x) > 0, и максимума, если f ''(x) < 0). Предполагается, что f ''(x) непрерывна в точке x0 и ее окрестности.

6.3 .Правило нахождения экстремума

. Чтобы найти экстремум функции, надо:

1) найти производную данной функции;

2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;

3) определить знак производной в каждом из промежутков, отграниченных стационарными точками ( стационарными точками называют точки в которых производная равна 0);

4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;