Смекни!
smekni.com

История математики. Александрийская школа (стр. 5 из 9)

Зеркала были известны еще с незапамятных времен в древнем Египте. Их делали из бронзы, серебра, иногда - золота. Стеклянные зеркала (стекло также умели делать еще древние египтяне) стали изготовлять, согласно Плинию Старшему, в Сидоне, финикийском городе на территории Сирии. Стеклянных дел мастера выплавляли стекла цветные, затем бесцветные, различные изделия из стекла, в том числе такие, которые нельзя было отличить от изделий из натурального горного хрусталя; в исходную массу добавляли свинец, серебро, золото, что придавало стеклу качества, делавшие его особенно ценным. Наполненные жидкостью стеклянные шарики, по словам Плиния, «воспламенялись так, что прожигали одежду», и врачи считали их лучшим средством для прижиганий.

По свидетельству Сенеки еще Демокрит изготовлял фальшивые изумруды. Тот же Сенека, римский философ I века, подробно рассказывает о зеркалах плоских, выпуклых, вогнутых, имевших форму сферического сегмента, используемых для забавы зеркалах, искажавших формы и размеры отраженных предметов или «способных превратить одного человека в целое войско». И тот же Сенека советует наблюдать солнечное затмение, глядя на отражение Солнца и Луны в налитом чашу масле или смоле, «ибо поверхность этих густых жидкостей не волнуется ветром и служит хорошим зеркалом. Затем мы видим, - пишет он, - как Луна проходит между Землей и Солнцем и скрывает от нас светило, гораздо большее и более далекое, чем она сама, частично или полностью, смотря по ее положению, Мы называем затмение полным, если становится темно и появляются звезды. Это происходит, когда центры обоих светил находятся на одной линии с нами. ... С какой целью природа, сотворив реальные предметы, позаботилась и о том, чтобы создать столь точные их изображения? Не для того же, чтобы люди брились, выщипывали брови, прихорашивались перед зеркалом! Никогда природа не поощряет порок роскошества. Но, так как глаза наши слишком слыбы, чтобы выдержать сияние Солнца, никогда бы мы не узнали его истинной формы, если бы природа не дала нам средство уменьшить его блеск. И поскольку на Солнце можно смотреть лишь на восходе и закате его, мы не узнали бы, что оно ослепительно белое, а не красное, если бы не могли наблюдать его отражение в более темной жидкости.» (Сенека, Вопросы естествознания, кн. 12). Следовательно, зеркальные поверхности использовались в некоторых случаях для астрономических наблюдений.

Было бы, вероятно, слишком большой смелостью утверждать, что Архимед использовал какие-то зеркала именно для астрономических наблюдений - и у нас нет для этого данных; но он, несомненно, проводил с их помощью научные изыскания. Какие - остается загадкой, как остается загадкой и конструкция зажигательного зеркала Архимеда. Было ли шестиугольное зеркало действительно плоским, каковы были его размеры, каковы были размеры подвижных четырехугольных зеркал, сколько их было? И было ли зеркало, описанием которого мы располагаем, именно тем, с помощью которого были сожжены корабли, или оно было «лабораторным прибором», слившимся в сознании не очень сведущих в оптике римских воинов с другими, более похожими на зеркала, точнее, системы зеркал, использованные Анфимием или Бюффоном? (Есть даже версия, согласно которой Архимед командовал расставленными вдоль стены города солдатами, державшими в руках отполированные щиты. По указанию ученого они поднимали щиты так, что отраженный в них свет попадал в одну и ту же точку корабля, и корабль загорался).

История оставила нам много загадок. До сих пор не имеет объяснения 260-дневный календарь народов Центральной Америки, рисунки в пустыне Наска, технология изготовления дамасской стали. Но мы знаем теперь, что знаменитые мегалитические сооружения на Британских островах и храмовые комплексы тольтеков и майя служили древним ученым-жрецам одновременно обсерваториями и своеобразными «астрономическими инструментами», как и разбросанные по огромным пространствам североамериканских прерий загадочные еще недавно «шаманские кольца». Надо надеяться, что рано или поздно и другие «тайны истории» найдут своих исследователей. Ждут их и зеркала Архимеда.

2.8.4. Математические труды.

Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволинейных фигур или тел. Сюда относятся трактаты О шаре и цилиндре, Об измерении круга, О коноидах и сфероидах, О спиралях и О квадратуре параболы. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигур, О плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теорем, Исчисление песчинок, Задача о быках и сохранившийся лишь в отрывках Стомахион. Существует еще одна работа – Книга о предположениях (или Книга лемм), сохранившаяся лишь в арабском переводе. Хотя она и приписывается Архимеду, в своем нынешнем виде она явно принадлежит другому автору (поскольку в тексте имеются ссылки на Архимеда), но, возможно, здесь приведены доказательства, восходящие к Архимеду. Несколько других работ, приписываемых Архимеду древнегреческими и арабскими математиками, утеряны.

Дошедшие до нас работы не сохранили своей первоначальной формы. Так, судя по всему, I книга трактата О равновесии плоских фигур является отрывком из более обширного сочинения Элементы механики; кроме того, она заметно отличается от II книги, написанной явно позднее. Доказательство, упоминаемое Архимедом в сочинении О шаре и цилиндре, было утрачено ко 2 в. н.э. Работа Об измерении круга сильно отличается от первоначального варианта, и предложение II в ней скорее всего заимствовано из другого сочинения. Заглавие О квадратуре параболы вряд ли могло принадлежать самому Архимеду, так как в его время слово «парабола» еще не использовалось в качестве названия одного из конических сечений. Тексты таких сочинений, как О шаре и цилиндре и Об измерении круга, скорее всего, подвергались изменениям в процессе перевода с дорийско-сицилийского на аттический диалект.

Задача о трисекции угла. Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.

Измерение круга. Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате "Измерение круга" он доказывает следующие три теоремы:

- Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.

- Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.

- Теорема третья: C-3d < d и C-3d > d, где С -длина окружности, а d-ее диаметр. Откуда, d < C-3d < d. Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово значение (архимедово число).

В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.

При доказательстве теорем о площадях фигур и объемах тел, ограниченных кривыми линиями или поверхностями, Архимед постоянно использует метод, известный как «метод исчерпывания». Изобрел его, вероятно, Евдокс (расцвет деятельности ок. 370 до н.э.) – по крайней мере, так считал сам Архимед. К этому методу время от времени прибегает и Евклид в XII книге Начал. Доказательство с помощью метода исчерпывания, в сущности, представляет собой косвенное доказательство от противного. Иначе говоря, утверждение «А равно В» считается истинным в том случае, когда принятие противоположного утверждения, «А не равно В», ведет к противоречию. Основная идея метода исчерпывания заключается в том, что в фигуру, площадь или объем которой требуется найти, вписывают (или вокруг нее описывают, либо же вписывают и описывают одновременно) правильные фигуры. Площадь или объем вписанных или описанных фигур увеличивают или уменьшают до тех пор, пока разность между площадью или объемом, которые требуется найти, и площадью или объемом вписанной фигуры не становится меньше заданной величины. Пользуясь различными вариантами метода исчерпывания, Архимед смог доказать различные теоремы, эквивалентные в современной записи соотношениям S = 4pr2 для площади поверхности шара, V = 4/3pr3 для его объема, теореме о том, что площадь сегмента параболы равна 4/3 площади треугольника, имеющего те же оcнование и высоту, что и сегмент, а также многие другие интересные теоремы.