Смекни!
smekni.com

Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении (стр. 5 из 25)

Таким образом, в условиях межмолекулярного триплет-триплетного переноса энергии (сравнительно высокие концентрации) наряду с тушением триплетных молекул донора одиночными молекулами акцептора по-видимому возможны и другие механизмы тушения. Их наличие должно проявляться в несоответствии параметров тушения фосфоресценции донора и сенсибилизированной фосфоресценции акцептора. Поэтому для установления и изучения возможных механизмов тушения в условиях переноса энергии необходимо исследование наряду с параметрами фосфоресценции донора параметров сенсибилизированной фосфоресценции акцептора.

1.2 МЕХАНИЗМЫ КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РАСТВОРАХ

На тушение люминесценции при увеличении концентрации растворов обращал внимание ещё Вавилов [88]: «Свечение растворов (как и всякое свечение в обычной оптической трактовке) может быть характеризовано четырьмя свойствами – спектрами излучения и поглощения, выходом, поляризацией и длительностью. Опыт показывает, что все эти свойства при значительном возрастании концентрации раствора могут претерпевать изменения: спектры деформируются, выход падает, поляризация свечения так же убывает, уменьшается и длительность свечения».

Природа концентрационного тушения возбужденных состояний из-за сложности и многообразия возможных причин является и в наши дни предметом многочисленных исследований. В разное время этому явлению были даны различные объяснения, большинство из которых теперь имеют лишь исторический интерес.

В обзоре Южакова В. И. [20], обобщающем результаты экспериментальных и теоретических работ по концентрационному тушению возбужденных состояний, показано, что к тому времени наметились два основных подхода в объяснении его природы. Первый основывался на возможности индукционно-резонансной миграции электронного возбуждения между мономерными молекулами. Эти представления затем были положены в основу миграционной теории концентрационного тушения люминесценции. Согласно данной теории, тушение возбужденных состояний при больших концентрациях люминесцирующих веществ происходит за счёт резонансной передачи энергии электронного возбуждения от одной молекулы красителя, находящейся в мономерной форме к другой такой же молекуле. При этом часть таких переходов сопровождается тушением.

Другой подход в объяснении концентрационного тушения возбужденных состояний подчёркивал важность обратимой ассоциации молекул люминесцирующих веществ. Это явление объяснялось неактивным поглощением нелюминесцирующих ассоциатов. В дальнейшем была развита теория тушения люминесценции за счёт миграции энергии возбуждения с мономеров на ассоциаты. Ассоциационная теория концентрационного тушения возбужденных состояний, созданная Лёвшиным В. Л. с сотрудниками, предусматривает собственное неактивное поглощение ассоциатов и миграцию возбуждения с мономеров на эти ассоциаты.

В дальнейшем оба подхода были подтверждены последующими исследованиями.

Миграционная теория концентрационного тушения люминесценции была развита в ряде теоретических работ [8,15-17,89-94] и подтверждена экспериментально [18,71,72,95-98].

Под миграцией энергии подразумевается передача возбуждения только между центрами одинаковой природы. В зависимости от природы возбуждений их перенос осуществляется либо дальнодействующим (мультипольным), либо короткодействующим (обменным) межцентровым взаимодействием.

Делокализация возбуждения по системе случайно расположенных одинаковых центров складывается в диффузию. В работах [8,16,93] методами теории неупорядоченных систем найдена концентрационная зависимость коэффициента диффузии как при мультипольном, так и при обменном взаимодействии.

Однако возможность диффузии возбуждения на большие расстояния вовсе не означает, что его тушение обязательно является диффузионным. Зона тушения вокруг акцептора может быть настолько узка, что возбуждение способно попасть внутрь неё и выйти наружу однократным перемещением, а не последовательностью мелких шагов, складывающихся в континуальную диффузию. Одноактное тушение называют прыжковым. Скорости диффузионного и прыжкового тушения по разному зависят от концентрации доноров и микропараметров переноса возбуждения [8,16]. В разбавленных растворах, по мнению авторов [93], следует отдать предпочтение прыжковому механизму тушения.

В обзорах Бодунова Е. Н. [15,16] проведён анализ различных теоретических методов: Монте-Карло, непрерывных во времени случайных блужданий, эффективной среды и самосогласованный графический, используемых при исследовании спектральной миграции возбуждения в трёхмерных средах. Анализируется зависимость положения и формы неоднородно уширенного спектра люминесценции от времени и концентрации молекул при различных условиях возбуждения среды и механизмах межчастичного взаимодействия. Приводятся концентрационные зависимости квантового выхода люминесценции сред, содержащих два сорта молекул (доноров и акцепторов энергии возбуждений).

При вычислении параметров люминесценции в [15,16] основное внимание уделяется мультипольному взаимодействию. Для обменного взаимодействия вычисляется лишь коэффициент диффузии возбуждения. Это по-видимому связано с тем, что обменные взаимодействия осуществляются на меньших расстояниях по сравнению с мультипольными. Если индуктивно-резонансные взаимодействия разрешены правилами отбора, то они обладают преимуществом перед обменно-резонансными. Но если передача энергии по всем видам кулоновского взаимодействия запрещена, как в случае передачи энергии триплетного возбуждения, то обменный механизм миграции возбуждения является основным. Недостаток теоретических работ, рассматривающих влияние миграции триплетного возбуждения по системе случайно расположенных центров на параметры выхода их фосфоресценции, делает сложным выявление данного механизма тушения в рассматриваемых системах.

В работе [97] показано, что миграция энергии возбуждения в условиях неоднородного уширения спектров растворённого вещества при определённом соотношении между временами жизни возбуждённого состояния, миграции и релаксации приводит к концентрационному длинноволновому смещению спектров люминесценции органических красителей в различных растворителях. Как в твёрдых телах, так и в жидких растворах центры люминесценции одних и тех же веществ не являются идентичными вследствие различия их ближайшего окружения. При этом, помимо смещения энергетических уровней примесных центров, от величины локальных полей зависят и вероятности излучательных и безызлучательных переходов в молекулах растворенного вещества, а следовательно, и времена жизни возбуждённого состояния [77]. Направленность миграционных процессов при наличии расстройки энергетических уровней взаимодействующих молекул с повышением концентрации растворённого вещества приводит к увеличению заселённости первого возбуждённого состояния молекул с наиболее низко расположенными уровнями энергии. Направленная миграция на такие молекулы проявляется в концентрационном длинноволновом смещении спектров свечения. Если величина квантового выхода люминесценции молекул значительно уменьшается с понижением их возбуждённых уровней, то при этом также возникает концентрационное тушение люминесценции.

Однако, авторами [96] показано, что механизм миграции по мономерным молекулам обнаруживается только при отсутствии в растворе ассоциатов. Если в растворе имеются физико-химические образования, то изменения в спектрах и кинетике, обусловленные этими взаимодействиями превосходят остальные, упомянутые выше.

Увеличение концентрации раствора обычно сопровождается развитием межмолекулярных взаимодействий, часто приводящих к ассоциации молекул различной степени сложности. В результате в растворе наряду с мономерными молекулами появляются центры, существенно изменяющие оптические свойства раствора. Экспериментально наблюдаются разнообразные изменения спектров поглощения и люминесценции растворов, падение квантового выхода свечения и других параметров [99-103]. Это связано со сложными межмолекулярными взаимодействиями в растворах органических соединений и различной природой сил, объединяющих молекулы в ассоциаты.

Образование ассоциатов может происходить как за счёт сил Ван-дер-Ваальса, так и благодаря возникновению водородных связей [20,104]. Вклад ориентационного, индукционного и дисперсионного членов в Ван-дер-Ваальсовское взаимодействие определяется природой молекул примесей и растворителя.

Среди органических молекул наиболее изученными с точки зрения образования ассоциатов являются молекулы красителей и класса хлорофиллов [20]. Молекулы красителей хорошо ассоциируют в воде, в смесях полярных и неполярных растворителей. В полярных растворителях, где происходит сильная сольватация молекул красителей, их агрегация происходит при больших концентрациях. В неполярных растворителях молекулы хлорофилла ассоциируют уже при небольших концентрациях, однако красители в таких растворителях обычно не растворяются. Влияние растворителя на процессы ассоциации определяется тем, в какой степени способствует или препятствует объединению молекул красителей окружающая их сольватная оболочка.

Теория Ван-дер-Ваальсовых сил построена на предположении, что расстояние между взаимодействующими молекулами больше их поперечных размеров. При малых межмолекулярных расстояниях, характерных для высококонцентрированных растворов, вероятно, могут приобрести значение и силы, убывающие быстрее, чем 1/R6, например, силы, связанные с квадрупольным или обменным взаимодействием. В работе [105] было показано, что процессы ассоциации, вызывающие появление новых полос поглощения, характеризуют объединение молекул в одной общей сольватной оболочке на расстоянии ~ 8-10 Å. Обычно считается, что величина Ван-дер-Ваальсовского взаимодействия для молекул красителей не превышает 2 ккал/моль. Однако, это нельзя считать строго установленным фактом. В обзоре [20] упомянуто, что расчёты, выполненные Коулсоном и Девисом для молекул с мощными p-электронными облаками дают значение дисперсионного взаимодействия более десятка ккал/моль.