Смекни!
smekni.com

Огнестойкие композиции на основе полибутилентерефталата (стр. 2 из 7)

При наличии в полимерах связей С=О, О-Н, Р=0, S=0, C=N, Si-O, B=N, P=N, энергия которых велика, горючесть полимеров снижается. Введение в полимеры ароматических колец может снизить горючесть полимера и повысить предел огнестойкости. Некоторые трудносгораемые полимеры, например, содержащие галогены или фосфор, не являются термостабильными из-за разрушения связей С-С1, С-Вг, группировок Р-О-С. Пониженная горючесть в этих полимерах обусловлена процессами, ин-гибирующими в поверхностной и предпламенной зонах воспламенение и развитие горения.

Пользуясь значениями средних энергий связей, трудно дать даже приближенную характеристику предлагаемым тепловым свойствам, так как в реальных полимерных телах энергии связей существенно зависят от окружения этих связей. Кроме того, нередко при разрушении полимеров значительную роль играют процессы термического гидролиза, окисления, которые, так же как термическое разложение, оказывают влияние на процессы массо- и теплопереноса.

Влияние некоторых физических параметров полимеров на их горючесть [6, 15]. Горение большинства полимеров, как указывалось выше, является гетерогенным, диффузионным процессом. При этом следует отметить, что диффузионные процессы играют более важную роль, чем химическая активация пиролиза. Это заключение основано на том, что значения кислородных индексов не зависят от химического состава полимера при повышении температуры окружающей среды. Существенное влияние на диффузионные процессы оказывает физическая структура материала или полимера и такие свойства, как плотность, кристалличность, анизотропность, растворимость, набухаемость, газопроницаемость и другие, которые являются проявлениями физической структуры. Физическая структура обусловлена химическим строением полимера, его составом и способом получения, она зависит от сил межмолекулярного взаимодействия и представляет собой наиболее выгодное по плотности упаковки образование макромолекул в данных условиях.

В работе [16] выявлена связь физической структуры полимеров с их горючестью и коксуемостью. Установлено, что при обычных условиях графитизации полиакрилонитрила надмолекулярная структура и ориентация макромолекулярных цепей сохраняется в широком интервале температур (от 20 до 2800 °С) вплоть до образования углеродного материала. Следует отметить, что анизотропия (текстура) в полимерах сохраняется при графитизации в «переходных формах» углерода и в углистом остатке после карбонизации полимера. В качестве примера сохранения текстуры материала можно привести процессы получения углеродных материалов из фенолформальдегидных смол, некоторых полиимидов [6].

Процессы получения углеродных материалов обычно проводят в атмосфере инертного газа при ступенчатом повышении температуры, однако исключить вероятность протекания аналогичных процессов в зоне пиролиза при горении, особенно в том случае, когда материал содержит группировки, способствующие коксованию. Например [17], при наличии в полимерных материалах борфосфор-, фосформеталл- и фосфорсодержащих группировок резко увеличивается выход коксового остатка при линейном пиролизе или горении. Кроме того, эти группировки способствуют формированию упорядоченных форм углерода в условиях карбонизации и графитизации.

Фосфорсодержащие трехмерные полиэфиры с упорядоченной структурой проявляют большую стойкость к огню, чем их аморфные аналоги [6]. При наличии кристалличности, анизотропии в полимерах плотность их повышается, что существенно влияет на горючесть полимерных материалов. Кроме того, увеличение числа сшивок в трехмерных полимерах повышает горючесть.

Следует отметить, что энергия когезии некоторых группировок полимерных макромолекул также играет важную роль в огнестойкости материала.

Так, в ряду галогенсодержащих групп энергия когезии уменьшается при переходе от Вг к С1 и от С1 к F, что соответствует изменению горючести в этом ряду. В частности, присутствие брома в полимере более эффективно содействует уменьшению горючести, чем такое же количество хлора или фтора. Аналогичные сопоставления можно провести между энергиями когезии и коксовыми числами полимеров. Из этих сравнений следует, что при уменьшении содержания метиленовых групп или при введении вместо них ароматических, амид-ных, аминных, гидроксильных, сложноэфирных или галогенсодержащих групп коксовые числа увеличиваются [6].

Учитывая сказанное о влиянии физической структуры на процессы коксования, симбатное изменение энергии когезии и коксовых чисел можно легко объяснить.

Наличие в полимерах таких гетероатомов, как фосфор, бор, барий, кальций, способствует, как уже указывалось, структурированию и увеличению выхода кокса. Объясняют это образованием на поверхности материалов минеральных поверхностных слоев. Например, высокий коксовый остаток полиарилатов, содержащих в цепи карборановые группы, обусловлен образованием минеральной пленки брутто-формулы В203. Считают, что аналогичные защитные пленки образуются на поверхности материала, содержащего фосфор или металл [18, 19]. Это является причиной снижения их горючести.

1.3 Способы снижения горючести полимерных материалов

Методы снижения горючести полимерных материалов основаны на следующих принципах:

изменение теплового баланса пламени за счет увеличения различного рода теплопотерь;

снижение потока тепла от пламени на полимер за счет создания защитных слоев, например образующего кокса;

уменьшение скорости газификации полимера;

изменение соотношения горючих и негорючих продуктов разложения материала в пользу негорючих [9].

Существует несколько способов снижения горючести полимерных материалов, которые можно условно разделить на следующие группы:

огнезащита с использованием устойчивых к пламени материалов (огнезащитных покрытий);

введение наполнителей горения или антипирирующих составов;

модификация полимерных материалов.

Наряду с первым и вторым способами используют пропитку полимерных материалов огнегасящими составами, способными образовывать на поверхности материала защитный слой.

Огнезащита устойчивыми к пламени материалами подразумевает покрытие плитками, листами из негорючих или трудносгораемых материалов изделий из горючих материалов. В качестве огнезащитных покрытий могут применяться огнезащитные краски, лаки, вспенивающие покрытия. Преимущества огнезащитных покрытий - в простоте изготовления и сравнительно небольшой стоимости работ. Недостатком этого способа является то, что при повышении температуры огнезащитное покрытие отслаивается от основного горючего материала, что вызывает загорание основного материала. Для вспенивающихся покрытий, на которых при воздействии огня или тепла образуется быстрорастущая негорючая пена с мелкими закрытыми порами, снижение адгезии покрытия к материалу менее вероятно из-за резкого уменьшения теплопередачи через покрытие.

Введение наполнителей приводит к некоторому снижению горючести, некоторые замедлите горения (красный фосфор, Sb203, соли фосфорной кислоты и т.д.) можно рассматривать как наполнители, в том случае, когда не наблюдается их растворение в материале. В качестве армирующих материалов широко применяют стекловолокна, асбест, углеродные волокна, улучшающие физико-механические характеристики, теплостойкость и вместе с тем приводящие к снижению горючести полимеров [20].

В качестве порошкообразных наполнителей, способствующих снижению горючести, применяют окислы и гидроокиси некоторых металлов, графит, окислы кремния (SiC^), сурьмы (Sb203), бораты цинка (Zn3(B03)2), природные неорганические вещества (каолин, пемза, гипс, перлит, монтмориллонит, вермикулит), различные соли, такие как оксалаты и карбонаты [21]. Многие из перечисленных порошков являются ингибиторами воспламенения и горения и находят применение в качестве огнетушащих веществ. Из ингибиторов горения в пламенной зоне наиболее эффективны окислы, затем в порядке уменьшения эффективности следуют соли: карбонаты, бромиды, сульфаты и фосфаты.

Широкое применение для строительных негорючих полимерных материалов различного назначения получили такие наполнители, как песок, перлит, вермикулит и окись кремния. Каолин, мел, гидроокись алюминия, мелкодисперсный карбонат кальция применяют при изготовлении резин.

На горючесть наполненных полимерных материалов оказывает влияние не только химическая природа наполнителя, но и дисперсность, а также прочность сцепления наполнителя и связующего. С увеличением адгезии возрастает прочность, что зачастую сопровождается увеличением огнестойкости и стабильности к термоокислению. Однако даже в случае удачного подбора наполнителя процесс воспламенения и горения композиционных полимерных материалов определяется степенью однородности и изотропности материала, концентрацией негорючих частиц в поверхностном слое материала.

Немалую роль в снижении горючести материалов при введении наполнителей играет степень наполнения. Например, в результате увеличения содержания связующего в минераловатных плитах с 4 до 8 % изменяется группа возгораемости материала: сгораемые плиты становятся трудносгораемыми. Преимущества введения наполнителей - одновременное улучшение ряда эксплуатационных характеристик материала. Основной недостаток при этом заключается в том, что при повышенных температурах происходит расслаивание материала.

Введение замедлителей горения и составов, замедляющих горение, в полимерные материалы заключается обычно в равномерном распределении этих веществ - антипирена в объеме материала. Этот способ более эффективен по сравнению с предыдущим из-за термических превращений замедлителей горе ния в зоне пиролиза и поверхностной зоне, а также диффузии продуктов их превращений на поверхности материала. При этом концентрация продуктов термических превращений замедлителей горения в поверхностной зоне резко возрастает, что в свою очередь ведет к ускорению коксования материала. Основным недостатком этого способа является в ряде случаев увеличение горючести материалов в процессе его эксплуатации, поскольку введенные замедлители горения могут «выпотевать», вымываться или иным способом выделяться из материала. В свою очередь все эти факты будут способствовать загрязнению окружающей природной среды [20, 22].