Смекни!
smekni.com

Огнестойкие композиции на основе полибутилентерефталата (стр. 5 из 7)


1.7 Структура полимерных композитов на основе монтмориллонита

Изучение распределения органоглины в полимерной матрице имеет большое значение, так как свойства получаемых композитов напрямую зависят от степени распределения органоглины.

Процесс формирования нанокомпозита протекает через ряд промежуточных стадий (рис. 1.2.) [50]. На первой стадии происходит образование тактоида - полимер окружает агломераты органоглины. На второй стадии происходит проникновение полимера в межслойное пространство органоглины, в результате чего происходит раздвижение слоев до 2-3 нм. Дальнейшее увеличение расстояния между слоями (третья стадия) приводит к частичному расслоению и дезориентации слоев органоглины. Эксфолиация или расслоение наблюдается, когда полимер раздвигает слои глины на 8 - 10 нм и более.

Рис. 1.2. Схема образования полимерного нанокомпозита

На самом деле, в получаемых полимерных композитах могут присутствовать все указанные структуры, что зависит от степени распределения органог-лины в полимерной матрице. Расшелушенная (эксфолиированная) структура является результатом очень хорошей степени распределения органоглины. При избытке органоглины и плохой степени диспергирования возможно присутствие агломератов органоглины в полимерной матрице, что подтверждается методом рентгено-структурного анализа [47].

При изучении полимерных композитов используется ряд специфических методов, которые позволяют судить о структуре материала (рентгено-структурный анализ, сканирующая (СЭМ), трансмиссионная (ТЭМ) электронная микроскопия и др.). Сравнивая данные рентгено-структурного анализа для органоглины и композитов можно определить оптимальное количество глины, которое необходимо вводить в композит.

В зависимости от степени распределения частиц глины в полимере выделяют интеркалированную и эксфолиированную структуру нанокомпозитов (рис. 1.З.). Надо заметить, что хотя на рисунке пластинки глины показаны жесткими, на самом деле они обладают некоторой гибкостью. Формирование интеркалированной или эксфолиированной структуры зависит от многих факторов, например, от способа получения нанокомпозита, от природы глины и т.д. [48].

Рис. 1.3. Формирование интеркалированной и эксфолированной


структуры композитов. Если поверхность композита гладкая, то частицы органоглины распределены равномерно. Поверхность композита, обычно, становится деформированной при увеличении содержания органоглины. Возможно, это влияние агломератов глины.

При содержании органоглины 2-3 масс. % слои глины разделены слоем по-ера толщиной ~ 4-10 нм. При большем содержании органоглины 4-5 масс.%

1.8 Способы получения полимерных композитов на основе алюмосиликатов

Разработаны следующие методы получения композитов на основе органоглин:

в процессе синтеза полимера;

в расплаве;

в растворе;

золь-гель процесс [48].

Для получения полимерных композитов на основе органоглин наиболее широко применяются методы получения в расплаве и в процессе синтеза полимера. Получение полимерного композита в процессе синтеза самого полимера заключается в интеркалировании мономера в слои глины. Мономер мигрирует сквозь галереи органоглины, и полимеризация происходит внутри слоев (рис. 1.4.) [51].

Реакция полимеризации может быть инициирована нагреванием, излучением или соответствующим инициатором. Очевидно, что при использовании этого метода должны получаться наиболее удовлетворительные результаты по степени распределения частиц глины в полимерной матрице. Это может быть связано с тем, что раздвижение слоев глины происходит уже в процессе внедрения мономера в межслойное пространство. Это означает, что силой, способствующей расслоению глины, является рост полимерной цепи. В то время как при получении полимерных нанокомпозитов в растворе или расплаве основным фактором достижения необходимой степени распределения глины является лишь удовлетворительное перемешивание. Желательно проводить процесс синтеза нанокомпозита в вакууме или токе инертного газа. Помимо этого, для удовлетворительного диспергирования органоглины в полимерной матрице необходимы большие скорости перемешивания.

Рис. 1.4. Получение полимерного нанокомпозита в процессе синтеза самого полимера (in situ) (а) - микрокомпозит, (Ь) - эксфолированный (расше-лушенныи) нанокомпозит, (с) - интеркалированный нанокомпозит.

Метод получения полимерных нанокомпозитов в расплаве (экструзион- ный) состоит в смешении расплавленного полимера с органоглиной. В ходе интеркаляции полимерные цепи в существенной степени теряют конформационную энтропию. Вероятной движущей силой для этого процесса является важный вклад энтальпии взаимодействия полимер-органоглина при смешении. Стоит добавить, что полимерные нанокомпозиты на основе органоглин успешно получают экструзией [50]. Преимуществом экструзионного метода является отсутствие каких-либо растворителей, что исключает наличие вредных стоков, скорость процесса значительно выше, более простое технологическое оформление производства. То есть для получения полимерных композитов в промышленных масштабах экструзионный метод является наиболее предпочтительным, требующим меньших затрат на сырьё и обслуживание технологической схемы.

При получении полимер-силикатных нанокомпозитов в растворе органо-силикат набухает в полярном растворителе, таком как толуол или N,N-диметилформамид. Далее к нему добавляется раствор полимера, который про никает в межслоевое пространство силиката. После этого проводится удаление растворителя путем испарения в вакууме. Основное преимущество этого метода заключается в том, что "полимер-слоистый силикат" может получаться на основе полимера с низкой полярностью или неполярного материала. Тем не менее, этот метод не находит широкого использования в промышленности по причине большого расхода растворителя [49].

При получении нанокомпозитов на основе различной керамики и полимеров применяется золь-гель технология, в которой исходными компонентами служат алкоголяты некоторых элементов и органические олигомеры. Сначала алкоголяты подвергают гидролизу, а затем проводят реакцию поликонденсации гидроксидов. В результате образуется керамика из неорганической трехмерной сетки. Существует также метод синтеза, в котором полимеризация и образование неорганического стекла протекают одновременно. Возможно применение нанокомпозитов на основе керамики и полимеров в качестве специальных твердых защитных покрытий, а также как оптические волокна [52].

1.9 Свойства полимерных композитов

Посредством введения наночастиц органоглины в полимерную матрицу, удается улучшить термическую стабильность и механические свойства полимеров. Достигается это благодаря объединению комплекса свойств органического (легкость, гибкость, пластичность) и неорганического (прочность, теплостойкость, химическая устойчивость) материалов.

Композиты демонстрируют существенное изменение свойств по сравнению с ненаполненными полимерами. Так при введении в полимерную матрицу модифицированных слоистых силикатов в пределах 2-10 вес. % наблюдается изменение: механических свойств, таких как прочность на растяжение, сжатие, изгиб и излом; барьерных свойств, таких, как проницаемость и стойкость к воздействию растворителей; оптических свойств и т.д. Плюс к этому повышается огнестойкость (температуростойкость), ударопрочность и практически отсутствует увеличение веса полимера и физико-механические свойства не ухудшаются как при обычных наполнениях, а существенно улучшаются.

Другие интересные свойства, демонстрируемые композитами "полимер-органоглина" включают повышенную термостабильность и стойкость к распространению пламени даже при очень низких концентрациях наполнителя. Формирование термоизоляции и незначительная проницаемость обугленного полимера для огня обеспечивают преимущества использования этих материалов.

Использование органоглины в качестве добавки в полимеры может изменять такие свойства, как температура деструкции, огнестойкость, упругость, прочность на разрыв. Важными свойствами композитов являются [53] увеличение модуля упругости, понижение коэффициента термического расширения, низкая газопроницаемость, повышенная устойчивость к действию растворителей. В композитах наблюдается широкий комплекс барьерных свойств.


Глава 2. Экспериментальная часть

2.1 Материалы и методики смешения

В работе в качестве исходных материалов использованы вторичный полиэтилентерефталат (ВПЭТФ), т. е. использованные пластиковые бутылки из-под минеральной воды, и органомодифицированная глина (месторождение Герпегеж). Предварительно собранные бутылки, прежде всего, отмывались от этикеток и других посторонних веществ. Для отмывки использовали моющие средства. Затем вторичный полиэтилентерефталат вручную измельчили в мелкую крошку. После этих операций вторичный ПЭТФ сушили при температуре 100 ± 5 °С в глубоком вакууме в течение двух часов.

Рабочие композиции на основе высушенного вторичного полиэтилентерефталата и органомодифицированной глины готовили следующим образом. Вначале приготовили концентрат на основе ВПЭТФ и органоглины, затем этот концентрат диспергировали в основной массе полимера экструзией на одношнековом экструдере фирмы «Betol» (Великобритания) с диаметром шнека 25 мм. Процесс экструдирования проводили при скорости вращения шнека 70 + 100 об/мин; температуре материального цилиндра 260 °С и температуре формирующей головки 230 °С. Затем экструдаты гранулировали и использовали для изготовления соответствующих образцов для физико-химических исследований. Содержание органоглины во вторичном ПЭТФ варьировали в интервале 0,5 + 5 масс. %.