Смекни!
smekni.com

Информационное управление клеточными процессами (стр. 3 из 9)

К примеру, для кодирования и программирования биологических молекул в клетке применяется два основных способа – линейный химический и пространственный, стереохимический. Иными словами в молекулярной биологии для кодирования биомолекул, то есть для задания построения трёхмерной структуры, используется линейный (химический) принцип записи информации. А для программирования, то есть для задания функций биологическим молекулам, применяется стереохимический (пространственный) принцип записи информации [5]. Линейный принцип кодирования биологических молекул в молекулярных системах широко применяется на разных этапах передачи генетических сообщений. Этот принцип служит инструментом для преобразования линейных цепей в трёхмерную структуру (конформацию) биологических макромолекул. Он основан на комбинационном способе применения различных биохимических букв и символов молекулярного алфавита живой материи.

Наиболее наглядным примером линейного кодирования информации являются процессы репликации, транскрипции или трансляции генетической информации, когда осуществляется матричный перенос информации с одних цепей на другие. Линейный принцип в живой клетке, как правило, используется для кодирования трёхмерной организации биологических молекул. В живой клетке функционируют только трёхмерные биомолекулы и компоненты, поэтому “одномерная” информация, записанная в “линейных” молекулярных цепях должна быть преобразована в трёхмерную структурную организацию и стереохимическую информацию биологических молекул. Благодаря уникальным свойствам элементной базы, структура молекулярных цепей всегда содержит конкретный алгоритм конформационно-информационного преобразования биологических молекул.

Причем, этот принцип существует и применяется для любых биомолекул клетки. К примеру, типовые характеристики полисахаридов и липидов полностью зависят от той кодовой организации мономеров (химических символов), которые используются в структурах данных макромолекул, что можно подтвердить результатами соответствующих исследований. Особенно наглядно это проявляется в полипептидных цепях белковых молекул, где кодируется разнообразнейшая информация. Поэтому важно знать, что любая полипептидная цепь всегда является тождественным эквивалентом соответствующего кодового послания генома, указывающего будущие характеристики белковой молекулы. Причем, каждое сообщение, при передаче информации в полипептидной цепи белка, как правило, передаётся своим индивидуальным кодом (кодовыми комбинациями аминокислот). Поэтому информация в цепи может содержать как свою адресную и “операционную”, так и свою структурную и текстовую (информационную) части. Значит, различные информационные сообщения в полипептидных цепях могут быть представлены различными молекулярными кодами и кодовыми комбинациями аминокислотных остатков.

Метод пространственного (стереохимического) кодирования основан на предварительном преобразовании линейной кодовой комбинации элементов цепей биомолекул в трёхмерную кодовую координатную организацию этих элементов и их боковых атомных групп в пространственной решетке. К примеру, линейная кодовая информация полипептидных цепей (как, впрочем, и других цепей биомолекул) всегда содержит конкретный алгоритм пространственного преобразования макромолекул. При этом сама программа функционирования белковой молекулы (благодаря управляющим средствам и программирующим свойствам элементов) коммутируется лабильными физико-химическими силами, связями и взаимодействиями между боковыми R-группами элементов (аминокислот) в составе её трёхмерной структуры.

Поэтому природа взаимодействий боковых атомных групп, определяющих конформационные особенности и внутреннюю динамику макромолекулы, имеет химическую основу и носит информационный характер, а сами взаимодействия основаны на правилах и принципах молекулярной биохимической логики. Макромолекула как бы стабилизируется самосогласованным сжимающим информационным полем, обусловленным силами притяжения между мономерами (программными элементами).

Поэтому функциональное поведение макромолекулы в клетке, при взаимодействии её с молекулярными партнёрами, определяется свободной энергией и результатом информационного взаимодействия как внутренних, так и внешних составляющих её элементов. В результате преобразований каждый белок клетки получает своё индивидуальное структурное, информационное, энергетическое, функциональное и программное обеспечение. Поэтому, стереохимический принцип кодирования молекулярной биологической информации применяется живой природой для размещения в одной макромолекуле различных по своему назначению сигналов, сообщений, команд управления, а также органов и механизмов их реализации.

Такая организация биомолекул не обладает сильной структурной жесткостью, а всегда достаточно лабильна в тех пределах, которые необходимы для выполнения их биологических функций. В связи с этим, в “молекулярной информатике”, для исследования информационных путей построения и программно-функционального поведения биомолекул, открывается большое поле деятельности [2]. Целью стереохимического кодирования белковых макромолекул является передача адресных информационных сообщений с кодовым разделением различных по своему назначению сигналов. Каждый функционально активный белок клетки, как молекулярный биологический программный объект, всегда состоит из данных, то есть, – функциональных биохимических программных элементов (аминокислот) и физико-химических алгоритмов, определяемых биохимической логикой их взаимодействия.

Очевидно, что молекулярные биологические системы наиболее широко используют стереохимические кодовые сигналы с переносчиком информации в виде трёхмерных биомолекул. А это уже качественно новый скачок в использовании молекулярной информации, которая в такой форме явно становится основной характеристикой живой материи. Стереохимическое кодирование в живых молекулярных системах служит для программирования функций различных биомолекул. И если для компактной трёхмерной упаковки молекулярных цепей, а, следовательно, и информации, в живых системах применяется линейный принцип кодирования, то стереохимический принцип кодирования, как считает автор статьи, служит для программирования самих функций биологических молекул. В силу этих обстоятельств информация в молекулярной биологии приобретает смысл только через функцию, которую она кодирует!

Биологические функции возникают в процессе информационного взаимодействия биологических молекул друг с другом. Поэтому все информационные взаимодействия биомолекул являются прелюдией к выполнению функций биологических. Стереохимическое кодовое разделение сигналов в трёхмерной структуре макромолекулы позволяет белку динамически и информационно взаимодействовать с различными молекулярными партнёрами: с транспортными молекулами, с коферментами, с мембранами клетки, с АТФ, с регуляторными молекулами, с партнёрами по агрегатированию и т. д.

В связи с этим, процесс описания конкретного функционального алгоритма белковой молекулы на языке “стереохимических кодовых команд” предлагаю назвать – “программированием в стереохимических кодах”. Биологические функции возникают лишь в процессе адресной встречи и обмена информацией между биомолекулами с помощью их кодовых стереохимических матриц, которые должны комплементарно соответствовать друг другу. А соответствие информационных кодов биологических молекул в живых системах строится по принципу их структурной (стерической) и химической комплементарности, то есть на основе взаимодополняемости их связей, структур и функций [2].

Собственно, – это и есть те разыскиваемые коды соответствий биологических молекул, которые являются основой их информационного взаимодействия! Стереохимическими кодами – пространственной организацией био-логических элементов в трёхмерной структуре, программируется работа исполнительных органов и механизмов, обуславливаются функции, поведение и биологическая судьба не только белковой, но и любой другой биомолекулы клетки. То есть, таким путём программируются все их биологические механизмы и функции! Как мы видим, особенности построения и функционального поведения биологических молекул непосредственно связаны с их элементарным содержанием и со способом записи и передачи информации между био-логическими элементами, входящими в структуру биомолекул.

Информация в живых молекулярных системах записывается “линейным” химическим или пространственным, стереохимическим способом. А передача информации осуществляется за счет контактного комплементарного принципа взаимодействия биологических молекул. Именно переключение состояний био-логических элементов в трехмерных конформациях, при информационных взаимодействиях биомолекул друг с другом, обеспечивает те функциональные процессы, которые происходят в структурах самих биологических молекул! А порядок и последовательность этих функциональных и динамических проявлений осуществляется той программной информацией, которая заранее была загружена в их структуры. Это, по мнению автора статьи, очень важный момент, на который исследователям живого следует обратить внимание. Исследование информационных процессов должно стать одним из приоритетных направлений в молекулярной информатике.

Таким образом, классическая схема самоорганизации биологических молекул в своей основе держится на информационных процессах! При этом если целью линейного химического кодирования является формирование трехмерных структур, то целью стереохимического кодирования биомолекул является передача адресных информационных сообщений с кодовым разделением различных по своему назначению сигналов [5]. Более чем наглядно это видно, когда такая программа реализуется в форме белков и ферментов, то есть в виде молекулярных биологических автоматов или манипуляторов. Поэтому можно сказать, что это – универсальный путь передачи управляющей информации для непосредственного использования её в различных биологических процессах [2].