Смекни!
smekni.com

Информационное управление клеточными процессами (стр. 8 из 9)

Здесь мы рассмотрели работу управляющей подсистемы клетки, действие которой непосредственно связано с программной информацией генетической памяти. Очевидно, что нет никаких причин сомневаться в информационной основе рассмотренных выше процессов управления. Теперь нам важно понять сущность управляемых клеточных процессов и убедиться в том, что, несмотря на химическую основу, они также носят информационный характер!

9. Информационная основа управляемых процессов.

Одна из отличительных особенностей клеточной системы управления заключается в том, что она информационно взаимодействует с молекулярными объектами управления. Вспомним, – все объекты управления (субстраты), точно так же, как и сама система управления, состоят не только из типовых био-логических элементов (и химических знаков), но и построены по одним и тем же типовым закономерностям. Этот факт позволяет живой клетке не только осуществлять управление превращениями субстратов (или пищевых продуктов), но и осуществлять самоуправление своими же биологическими компонентами.

Очевидно, что все биохимические элементы, а значит и биомолекулы клетки (в том числе и молекулы субстратов), обладают разными типовыми функциональными и боковыми группами, атомами и их химическими связями, которые свободно узнаются и тестируются соответствующими ферментами. Боковые и функциональные атомные группы, атомы и их химические связи – это и есть те опознавательные знаки, благодаря которым управляющая система легко может идентифицировать любой био-логический элемент клетки. Поэтому в живой клетке, кроме молекулярного алфавита различных элементов, существует ещё и свой химический алфавит типовых атомных групп и атомов, манипулируя которыми управляющая система может осуществлять их движение от одного элемента к другому (а, значит, и между молекулами). Поэтому, циркуляция атомных групп и атомов определяет свою субмолекулярную форму движения информации, которая в живой клетке организована в виде управляемых ступенчатых химических реакций! [6].

Таким образом, информационные процессы в живой клетке практически затрагивают не только молекулярный уровень организации, но и, что удивительно, субмолекулярный – атомный! Однако следует отметить, – если целостные элементы в основном служат для организации самих аппаратных устройств и управляющих процессов клетки, то отдельные химические знаки используются не только в качестве информационных сигналов для организации управляемых химических процессов, но применяются и для построения или реорганизации (перекодировки) самих био-логических элементов. В связи с этим, управляющая система клетки, в целом, способна манипулировать различными химическими буквами, символами и знаками, которым предписан определённый биологический и информационный смысл [3].

Очевидно, что все управляемые процессы представляют собой ничто иное, как те ступенчатые химические реакции, которые определяют пути клеточного метаболизма. Только, в ступенчатых химических реакциях различные ферменты способны манипулировать отдельными химическими знаками био-логических элементов. Эта способность управляющей системы основана на том, что при фермент-субстратных взаимодействиях, адресные и операционные коды определенных ферментов соответствуют тем или иным боковым или функциональным атомным группам или атомам и их химическим связям.

Значит, молекулярные коды соответствий, и средства их передачи существуют не только для важнейших систем био-логических элементов – нуклеотидов и аминокислот. Они существуют для любых мономеров и их химических знаков. А одинаковые кодовые комбинации элементов и их боковых атомных групп в активных центрах ферментов всегда воспринимаются конкретной клеткой как одна и та же (эквивалентная) информация, реализуемая в одних и тех же действиях. Очевидно, что для информационного манипулирования различными химическими буквами, символами и знаками живая клетка применяет свои специфические химические или стереохимические молекулярные коды. Специалистам лишь следует научиться их правильно выявлять и идентифицировать.

Кодовые компоненты активных центров ферментов могут специфически (стереохимически и комплементарно) взаимодействовать с доступными для них атомными группами и химическими связями биомолекул (субстратов). Поэтому все субстраты для своих ферментов являются сигнальными молекулами, несущими осведомляющую стереохимическую информацию! На этом основана молекулярная биохимическая логика информационных взаимодействий между ферментами и их субстратами.

В ходе каждой химической реакции, которая управляется своим ферментом, обычно происходит лишь небольшое химическое изменение, например, удаление, перенос или присоединение какого-нибудь атома, боковой или функциональной группы или отдельного биохимического элемента. Иными словами, часть выходного звена управляющего аппарата должна координировать в пространстве и во времени совокупность огромного числа ступенчатых реакций: окисления, восстановления, расщепления, межмолекулярного переноса атомных групп и т. д. Поэтому в качестве объектов управления в клетке могут выступать как отдельные био-логические элементы (нуклеотиды, аминокислоты, простые сахара и жирные кислоты), так и различные биологические молекулы, состоящие из этих элементов, – то есть многочисленные молекулы субстратов.

Каждый объект управления (субстрат) является носителем в “законсервированном” (статическом) виде определённой структурной биологической информации и химической энергии, накопленной в его химических связях. Поэтому все органические питательные вещества, поступающие в живую систему, представляют собой молекулярные информационно-энергетические субстраты, которые поставляют в клетку необходимые структурные, информационные и энергетические компоненты. И всё это клетка получает в результате информационной переработки субстратов (данных). Благодаря стереохимической форме представления информации, сигнальными элементами субстратов для управляющей системы являются лишь те элементы, к которым она в данный момент имеет доступ. Другие же сигнальные элементы (буквы, символы или знаки) временно маскируются в трёхмерной структуре субстрата.

Поэтому информационное преобразование молекулы субстрата, при обработке её различными ферментами, осуществляется последовательно, шаг за шагом (программно), в виде отдельных единичных каталитических операций. Таким образом, все биологические процессы управления и химического превращения веществ в клетке сопряжены с процессами преобразования, как управляющей, так и осведомляющей молекулярной информации. Поскольку каждый фермент способен управлять лишь какую-то одну цепь реакций данного соединения, не влияя на другие возможные реакции, то в отдельно взятом компартменте (операционном блоке) одновременно может протекать множество различных химических реакций.

В связи с этим, можно сделать заключение о том, что других специальных механизмов синхронизирующих работу белков и ферментов, по-видимому, не требуется (кроме сигналов обратных связей или изменения физических и химических факторов микросреды).

10. Операционные блоки ступенчатых процессов.

Ступенчатые биохимические процессы – это деградация или синтез различных простых органических соединений. Это именно тот, программно управляемый биохимический “генератор жизни”, который осуществляет вечное движение органического вещества и энергии и поддерживает баланс разрушительных и созидательных процессов в живой клетке. Очевидно, что управляющая система клетки, по свому назначению, является той информационной системой, которая служит для управления молекулярными биологическими объектами (субстратами). На структурной схеме показаны операционные блоки катаболических и амфиболических (центральных) путей. Важнейшие из них – гликолиз, b -окисление жирных кислот, цикл трикарбоновых кислот и пути распада аминокислот обеспечивают поступление электронов и протонов в электрон-транспортную систему и образование углеродсодержащих соединений (около десяти веществ).

Как видно из структурной схемы, каждый операционный блок содержит свою управляющую и управляемую части. Поступление в блок молекулярных автоматов или манипуляторов – выходного звена управления биопроцессоров, показано жирными черными стрелками. Управляемые потоки вещества, тождественно представляющие потоки сигнальной (осведомляющей) информации субстратов, показаны в виде серых стрелок. Каждый операционный блок предназначен для переработки своей субстратной информации, или, с точки зрения биохимии, для осуществления определенных биохимических реакций. К примеру, блок амфиболических путей обеспечивает не только поступление в блок синтеза элементной базы соответствующих углеродсодержащих соединений, но и осуществляет энергообеспечение живой клетки в форме АТФ. “Благодаря разной локализации ферментов катаболизма и анаболизма эти противоположные метаболические процессы протекают в клетке одновременно. Их связывают центральные, или амфиболические процессы. Примером служит цикл трикарбоновых кислот. Тесная связь между анаболизмом и катаболизмом проявляется на трех уровнях: