Смекни!
smekni.com

Основные функции и компоненты ядра ОС UNIX (стр. 7 из 13)

Следует заметить, что при выполнении системного вызова exec не образуется новый процесс, а лишь меняется содержимое виртуальной памяти существующего процесса. Другими словами, меняется только пользовательский контекст процесса.

Полезные возможности ОС UNIX для общения родственных или независимо образованных процессов рассматриваются ниже в разделе 3.4.

Понятие нити (threads)

Понятие "легковесного процесса" (light-weight process), или, как принято называть его в современных вариантах ОС UNIX, "thread" (нить, поток управления) давно известно в области операционных систем. Интуитивно понятно, что концепции виртуальной памяти и потока команд, выполняющегося в этой виртуальной памяти, в принципе, ортогональны. Ни из чего не следует, что одной виртуальной памяти должен соответствовать один и только один поток управления. Поэтому, например, в ОС Multics (раздел 1.1) допускалось (и являлось принятой практикой) иметь произвольное количество процессов, выполняемых в общей (разделяемой) виртуальной памяти.

Понятно, что если несколько процессов совместно пользуются некоторыми ресурсами, то при доступе к этим ресурсам они должны синхронизоваться (например, с использованием семафоров, см. п. 3.4.2). Многолетний опыт программирования с использованием явных примитивов синхронизации показал, что этот стиль "параллельного" программирования порождает серьезные проблемы при написании, отладке и сопровождении программ (наиболее трудно обнаруживаемые ошибки в программах обычно связаны с синхронизацией). Это явилось одной из причин того, что в традиционных вариантах ОС UNIX понятие процесса жестко связывалось с понятием отдельной и недоступной для других процессов виртуальной памяти. Каждый процесс был защищен ядром операционной системы от неконтролируемого вмешательства других процессов. Многие годы авторы ОС UNIX считали это одним из основных достоинств системы (впрочем, это мнение существует и сегодня).

Однако, связывание процесса с виртуальной памятью порождает, по крайней мере, две проблемы. Первая проблема связана с так называемыми системами реального времени. Такие системы, как правило, предназначены для одновременного управления несколькими внешними объектами и наиболее естественно представляются в виде совокупности "параллельно" (или "квази-параллельно") выполняемых потоков команд (т.е. взаимодействующих процессов). Однако, если с каждым процессом связана отдельная виртуальная память, то смена контекста процессора (т.е. его переключение с выполнения одного процесса на выполнение другого процесса) является относительно дорогостоящей операцией. Поэтому традиционный подход ОС UNIX препятствовал использованию системы в приложениях реального времени.

Второй (и может быть более существенной) проблемой явилось появление так называемых симметричных мультипроцессорных компьютерных архитектур (SMP - Symmetric Multiprocessor Architectures). В таких компьютерах физически присутствуют несколько процессоров, которые имеют одинаковые по скорости возможности доступа к совместно используемой основной памяти. Появление подобных машин на мировом рынке, естественно, поставило проблему их эффективного использования. Понятно, что при применении традиционного подхода ОС UNIX к организации процессов от наличия общей памяти не очень много толка (хотя при наличии возможностей разделяемой памяти (см. п. 3.4.1) об этом можно спорить). К моменту появления SMP выяснилось, что технология программирования все еще не может предложить эффективного и безопасного способа реального параллельного программирования. Поэтому пришлось вернуться к явному параллельному программированию с использованием параллельных процессов в общей виртуальной (а тем самым, и основной) памяти с явной синхронизацией.

Что же понимается под "нитью" (thread)? Это независимый поток управления, выполняемый в контексте некоторого процесса. Фактически, понятие контекста процесса, которое мы обсуждали в п. 3.1.1, изменяется следующим образом. Все, что не относится к потоку управления (виртуальная память, дескрипторы открытых файлов и т.д.), остается в общем контексте процесса. Вещи, которые характерны для потока управления (регистровый контекст, стеки разного уровня и т.д.), переходят из контекста процесса в контекст нити. Общая картина показана на рисунке 3.4.

Рис. 3.4. Соотношение контекста процесса и контекстов нитей

Как видно из этого рисунка, все нити процесса выполняются в его контексте, но каждая нить имеет свой собственный контекст. Контекст нити, как и контекст процесса, состоит из пользовательской и ядерной составляющих. Пользовательская составляющая контекста нити включает индивидуальный стек нити. Поскольку нити одного процесса выполняются в общей виртуальной памяти (все нити процесса имеют равные права доступа к любым частям виртуальной памяти процесса), стек (сегмент стека) любой нити процесса в принципе не защищен от произвольного (например, по причине ошибки) доступа со стороны других нитей. Ядерная составляющая контекста нити включает ее регистровый контекст (в частности, содержимое регистра счетчика команд) и динамически создаваемые ядерные стеки.

Приведенное краткое обсуждение понятия нити кажется достаточным для того, чтобы понять, что внедрение в ОС UNIX механизма легковесных процессов требует существенных переделок ядра системы. (Всегда трудно внедрить в программу средства, для поддержки которых она не была изначально приспособлена.)

Подходы к организации нитей и управлению ими в разных вариантах ОС UNIX

Хотя концептуально реализации механизма нитей в разных современных вариантах практически эквивалентны (да и что особенное можно придумать по поводу легковесных процессов?), технически и, к сожалению, в отношении интерфейсов эти реализации различаются. Мы не ставим здесь перед собой цели описать в деталях какую-либо реализацию, однако постараемся в общих чертах охарактеризовать разные подходы.

Начнем с того, что разнообразие механизмов нитей в современных вариантах ОС UNIX само по себе представляет проблему. Сейчас достаточно трудно говорить о возможности мобильного параллельного программирования в среде UNIX-ориентированных операционных систем. Если программист хочет добиться предельной эффективности (а он должен этого хотеть, если для целей его проекта приобретен дорогостоящий мультипроцессор), то он вынужден использовать все уникальные возможности используемой им операционной системы.

Для всех очевидно, что сегодняшняя ситуация далека от идеальной. Однако, по-видимому, ее было невозможно избежать, поскольку поставщики мультипроцессорных симметричных архитектур должны были как можно раньше предоставить своим покупателям возможности эффективного программирования, и времени на согласование решений просто не было (любых поставщиков прежде всего интересует объем продаж, а проблемы будущего оставляются на будущее).

Применяемые в настоящее время подходы зависят от того, насколько внимательно разработчики ОС относились к проблемам реального времени. (Возвращаясь к введению этого раздела, еще раз отметим, что здесь мы имеем в виду "мягкое" реальное время, т.е. программно-аппаратные системы, которые обеспечивают быструю реакцию на внешние события, но время реакции не установлено абсолютно строго.) Типичная система реального времени состоит из общего монитора, который отслеживает общее состояние системы и реагирует на внешние и внутренние события, и совокупности обработчиков событий, которые, желательно параллельно, выполняют основные функции системы.

Понятно, что от возможностей реального распараллеливания функций обработчиков зависят общие временные показатели системы. Если, например, при проектировании системы замечено, что типичной картиной является "одновременное" поступление в систему N внешних событий, то желательно гарантировать наличие реальных N устройств обработки, на которых могут базироваться обработчики. На этих наблюдениях основан подход компании Sun Microsystems.

В системе Solaris (правильнее говорить SunOS 4.x, поскольку Solaris в терминологии Sun представляет собой не операционную систему, а расширенную операционную среду) принят следующий подход. При запуске любого процесса можно потребовать резервирования одного или нескольких процессоров мультипроцессорной системы. Это означает, что операционная система не предоставит никакому другому процессу возможности выполнения на зарезервированном(ых) процессоре(ах). Независимо от того, готова ли к выполнению хотя бы одна нить такого процесса, зарезервированные процессоры не будут использоваться ни для чего другого.

Далее, при образовании нити можно закрепить ее за одним или несколькими процессорами из числа зарезервированных. В частности, таким образом в принципе можно привязать нить к некоторому фиксированному процессору. В общем случае некоторая совокупность потоков управления привязывается к некоторой совокупности процессоров так, чтобы среднее время реакции системы реального времени удовлетворяло внешним критериям. Очевидно, что это "ассемблерный" стиль программирования (слишком много перекладывается на пользователя), но зато он открывает широкие возможности перед разработчиками систем реального времени (которые, правда, после этого зависят не только от особенностей конкретной операционной системы, но и от конкретной конфигурации данной компьютерной установки). Подход Solaris преследует цели удовлетворить разработчиков систем "мягкого" (а, возможно, и "жесткого") реального времени, и поэтому фактически дает им в руки средства распределения критических вычислительных ресурсов.