Смекни!
smekni.com

Лекции по курсу "Информатика" (стр. 8 из 17)

Организации, покупавшие мини-ЭВМ для создания контроллеров, довольно быстро поняли, что, обладая функциональной избыточностью, мини-ЭВМ может решать и вычислительные задачи традиционные для больших ЭВМ. Простота обслуживания мини-ЭВМ, их сравнительно низкая стоимость и малые габариты позволяли снабдить этими машинами небольшие коллективы исследователей, разработчиков- экспериментаторов и т.д., т.е., дать прямо в руки пользователей ЭВМ. В начале 70-х годов с термином мини-ЭВМ связывали уже два существенно различных типа средств вычислительной техники:

- универсальный блок обработки данных и выдачи управляющих сигналов, серийно выпускаемых для применения в различных специализированных системах контроля и управления;

- небольших габаритов универсальную ЭВМ, проблемно-ориентированную пользователем на решение ограниченного круга задач в рамках одной лаборатории, тех. участка и т.д., т.е., задач, в решении которых оказывались заинтересованы 10-20 человек, работавших над одной проблемой.

Представители этого поколения ЭВМ: СМ-1420.

Четвертый этап - до 78 г. Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электронных элементов. Это позволило разработать более дешевые ЭВМ, имеющие большую память и меньший цикл выполнения команд: стоимость байта памяти и одной машинной операции резко снизилась. Но, так как затраты на программирование почти не сокращались, то на первыйплан вышла задача экономии человеческих, а не машинных ресурсов.

Разрабатывались новые ОС, позволяющие программистам отлаживать свои программы прямо за дисплеем ЭВМ и ускоряло разработку программ. Это полностью противоречило концепциям первых этапов информационной технологии: "процессор выполняет лишь ту часть работы по обработке данных, которую принципиально выполнить не могут люди, т.е., массовый счет" . Стала прослеживаться другая тенденция: "все, что могут делать машины, должны делать машины; люди выполняют лишь ту часть работы, которую нельзя автоматизировать".

В 71 году был изготовлен первый микропроцессор - БИС, в которой полностью размещался процессор ЭВМ простой архитектуры. Стала реальной возможность размещения в одной БИС почти всех электронных устройств несложной по архитектуре ЭВМ, т.е., возможность серийного выпуска простых ЭВМ малой стоимости. Появились дешевые микрокалькуляторы и микроконтроллеры - управляющие устройства, построенные на одной или нескольких БИС, содержащих процессор, память и системы связи с датчиками и исполнительными органами в объекте управления. Программа управления объектами вводилась в память ЭВМ либо при изготовлении, либо непосредственно на предприятии.

В 70-х годах стали изготовлять и микро-ЭВМ - универсальные ВС, состоящие из процессора, памяти, схем сопряжения с устройствами В/В и тактового генератора, размещенных в одной БИС (однокристальная ЭВМ) или в нескольких БИС, установленных на одной плате (одноплатная ЭВМ). Повторяется картина 60-х годов, когда первые мини-ЭВМ отбирали часть работы у больших ЭВМ.

Представители этого поколения ЭВМ: СМ-1800, "Электроника 60М".

Пятый этап - н/в. Улучшение технологии БИС позволяло изготовлять дешевые электронные схемы, содержащие сотни тысяч элементов в кристалле - схемы сверхбольшой степени интеграции - СБИС.

Появилась возможность создать настольный прибор с габаритами массового телевизора, в котором размещались микро-ЭВМ, клавиатура, а также схемы сопряжения с малогабаритным печатающим устройством, измерительной аппаратурой, другими ЭВМ и т.п. Благодаря ОС, обеспечивающей простоту общения с этой ЭВМ большой библиотеки прикладных программ по различным отраслям человеческой деятельности, а также малой стоимости, такой персональный компьютер становится необходимой принадлежностью любого специалиста и даже ребенка.

Кроме функций помощника в решении традиционных задач расчетного характера персональный компьютер (ПК) может выполнять функции личного секретаря; помогать в составлении личной картотеки; создавать, хранить, редактировать и размножать тексты и т.п.

ПК, как правило, состоит из следующих функциональных устройств: 16 или 32-разрядного процессора; оперативно-запоминающего устройства - информационной емкостью 64-1024 Кбайт; системного постоянно-запоминающего устройства емкостью 32-64 Кбайт; контроллера для связи с клавиатурой и периферийных устройств через стандартные параллельные и последовательные интерфейсы; а также контроллеров для локальных сетей; растрового дисплея для вывода текстовой и графической информации; внешнего запоминающего устройства: 1 или 2 накопителя на гибких магнитных дисках (НГМД) емкостью 400 - 1200 Кбайт, более дорогие ПК включают накопители на жестких магнитных дисках (тина "Винчестер") емкостью 5-100 Мбайт.

Несмотря на эволюцию вычислительной техники в структуре компьютера общего назначения можно выделить следующие наиболее существенные подсистемы: обрабатывающую, памяти, ввода/вывода, печатающего устройства и телеобработки.

Все эти подсистемы (п/с) различные по функциональному назначению и отличаются уровнем логической организации.

Обрабатывающая подсистема (центральный процессор - ЦП) является устройством, непосредственно осуществляющим обработку данных и управления другими устройствами ЭВМ.

Подсистема памяти - средства памяти, используемые для хранения информации, необходимой для хранения текущего процесса обработки данных. Центральный процессор использует информацию в основной памяти также и для управления системой. Как правило, основная память является оперативной.

Подсистема ввода/вывода обеспечивает ввод/вывод информации в ЭВМ, осуществляя связь с центральным процессором и операционной системой с одной стороны и печатающим устройством- с другой.

Подсистема печатающего устройства выполняет функции хранения, ввода/вывода информации. В ее состав входят: внешнее запоминающее устройство- НГМД, НЖМД; клавиатура, мышь и т.д. Подсистема допускает значительные расширения как по составу, так и по количеству печатающих устройств. Подсистема печатающего устройства практически не зависит от выбранной организации и технических параметров центральных устройств.

Подсистема телеобработки позволяет подключить персональный

компьютер к территориально удаленным старшим моделям ЭВМ и использовать их в качестве "интеллектуальных" терминалов в распределенных системах обработки данных.

Остановимся более подробно на архитектурном строение ПК. Архитектура ЭВМ- это множество ресурсов, доступных пользователю. Архитектура включает в себя: разрядность слова, форматы и систему команд, режимы адресации ОП, состав программно-доступных регистров, объем ОЗУ, способ адресации внешних устройств, слово-состояние процессора и т.д. Не будем более детально рассматривать эти понятия, а остановимся на свойствах архитектуры.

К наиболее существенным свойствам архитектуры и характеристикам ЭВМ общего назначения можно отнести: 1) универсальность; 2) совместимость; 3) развитое программное обеспечение; 4) агрегатность технических средств и широкая номенклатура внешних (периферийных) устройств; 5) высокая технологичность; 6) соответствие широко распространенным мировым стандартам.

1) Универсальность обеспечивает возможность одинаково решать задачи различных классов практически для всех областей деятельности. Это достигается прежде всего:

- универсальной системой команд, содержащей кроме операций двоичной арифметики полный набор операций десятичной арифметики с операндами (т.е. элементами данных, над которыми выполняется операция);

- универсальной логической структурой, имеющей обязательные (стандартные) аппаратные и программные средства для всех моделей ЭВМ, образующих единое семейство;

- сбалансированностью входящих в нее устройств по быстродействию и потокам информации между ними.

2) Совместимость достигается аппаратно-программными средствами с целью создания единого прикладного и системного программного обеспечения для всех моделей ЭВМ общего назначения одного семейства. За счет совместимости обеспечивается одинаковость результатов программ и перенос программных средств между различными моделями ЭВМ. Достижение полной совместимости (абсолютной) представляется очень сложной задачей, поэтому в большинстве случаев ограничиваются частичной совместимостью, а именно, совместимостью "снизу - вверх", при которой программы, разработанные для менее мощной ЭВМ (младшей), должны обязательно и с тем же результатом проходить на более мощной ЭВМ (старшей). Перенос "сверху- вниз" ограничен. Но даже в этом случае должна обеспечиваться совместимость по крайней мере на 4-х уровнях аппаратно-программных средств: 1) операционной системы и пакетов ее расширяющих; 2) языковых интерфейсов; 3) системы программ; 4) пользовательских средств.

3)Развитие программного обеспечения ориентированного на конкретные структурные и функциональные возможности аппаратуры, позволяющие эффективно решать задачи пользователя. Для ЭВМ общего назначения ОС стала неотъемлемой частью, представляющей собой программное расширение аппаратных средств ЭВМ.

4) Агрегатный принцип построения технических средств, стандартный интерфейс ввода-вывода, позволяющий подключать различные по назначению периферийные устройства (ПУ) широкой номенклатуры; в совокупности с программным обеспечением позволяют строить конкретный вычислительный комплекс, наиболее подходящий для заданного применения с учетом требований и производительности, функциональным возможностям и набору ПУ.