Смекни!
smekni.com

Автоматизація доступу до каналів комп'ютерних мереж (стр. 4 из 16)

Рис. 1.7. Логічна і фізична топології мережі

Іншим прикладом неспівпадання фізичної і логічної топологий мережі є вже розглянута мережа на рис. 1.6, а. Концентратор Ethernet підтримує в мережі фізичну топологію зірка. Проте логічна топологія мережі залишилася без змін - це загальна шина. Оскільки концентратор повторює дані, що прийшли з будь-якого порту, на решті всіх портів, то вони з'являються одночасно на всіх фізичних сегментах мережі, як і в мережі з фізичною загальною шиною. Логіка доступу до мережі абсолютно не міняється: всі компоненти алгоритму випадкового доступу - визначення незанятості середовища, захоплення середовища, розпізнавання і відробіток колізій - залишаються в силі.

Фізична структуризація мережі за допомогою концентраторів корисна не тільки для збільшення відстані між вузлами мережі, але і для підвищення її надійності. Наприклад, якщо який-небудь комп'ютер мережі Ethernet з фізичною загальною шиною із-за збою починає безперервно передавати дані по загальному кабелю, то вся мережа виходить з ладу, і для вирішення цієї проблеми залишається тільки один вихід - уручну від'єднати мережевий адаптер цього комп'ютера від кабелю. У мережі Ethernet, побудованій з використанням концентратора, ця проблема може бути вирішена автоматично - концентратор відключає свій порт, якщо виявляє, що приєднаний до нього вузол дуже довго монопольно займає мережу. Концентратор може блокувати некоректно працюючий вузол і в інших випадках, виконуючи роль деякого вузла, що управляє.

1.2.2 Логічна структуризація мережі

Фізична структуризація мережі корисна у багатьох відношеннях, проте у ряді випадків, що зазвичай відносяться до мереж великого і середнього розміру, неможливо обійтися без логічної структуризації мережі. Найбільш важливою проблемою, що не вирішується шляхом фізичної структуризації, залишається проблема перерозподілу передаваного трафіку між різними фізичними сегментами мережі.

У великій мережі природним чином виникає неоднорідність інформаційних потоків: мережа складається з безлічі підмереж робочих груп, відділів, філій підприємства і інших адміністративних утворень. Дуже часто найбільш інтенсивний обмін даними спостерігається між комп'ютерами, що належать до однієї підмережі, і лише невелика частина звернень відбувається до ресурсів комп'ютерів, що знаходяться поза локальними робочими групами. (До недавнього часу таке співвідношення трафіків не бралося під сумнів, і був навіть сформульований емпіричний закон «80/20», відповідно до якого в кожній підмережі 80 % трафіку є внутрішнім і лише 20 % - зовнішнім.) Зараз характер навантаження мереж багато в чому змінився, широко упроваджується технологія intranet, на багатьох підприємствах є централізовані сховища корпоративних даних, активно використовувані всіма співробітниками підприємства. Все це не могло не вплинути на розподіл інформаційних потоків. І тепер не рідкісні ситуації, коли інтенсивність зовнішніх звернень вище інтенсивності обміну між «сусідніми» машинами. Але незалежно від того, в якій пропорції розподіляються зовнішній і внутрішній трафік, для підвищення ефективності роботи мережі неоднорідність інформаційних потоків необхідно враховувати.

Мережа з типовою топологією (шина, кільце, зірка), в якій всі фізичні сегменти розглядаються як одне середовище, що розділяється, виявляється неадекватній структурі інформаційних потоків у великій мережі. Наприклад, в мережі із загальною шиною взаємодія будь-якої пари комп'ютерів займає її на весь час обміну, тому при збільшенні числа комп'ютерів в мережі шина стає вузьким местомом. Комп'ютери одного відділу вимушені чекати, коли закінчить обмін пари комп'ютерів іншого відділу, і це при тому, що необхідність в зв'язку між комп'ютерами двох різних відділів виникає набагато рідше і вимагає зовсім невеликої пропускної спроможності.

Цей випадок ілюструє рис. 1.8, а. Тут показана мережа, побудована з використанням концентраторів. Хай комп'ютер А, що знаходиться в одній підмережі з комп'ютером В, посилає йому дані. Не дивлячись на розгалужену фізичну структуру мережі, концентратори поширюють будь-який кадр по всіх її сегментах. Тому кадр, що посилається комп'ютером А комп'ютеру В, хоча і не потрібний комп'ютерам відділів 2 і 3, відповідно до логіки роботи концентраторів поступає на ці сегменти теж. І до тих пір, поки комп'ютер В не отримає адресований йому кадр, жоден з комп'ютерів цієї мережі не зможе передавати дані.

Така ситуація виникає через те, що логічна структура даної мережі залишилася однорідною - вона ніяк не враховує збільшення інтенсивності трафіку усередині відділу і надає всім парам комп'ютерів рівні можливості по обміну інформацією (рис. 1.8, б).

Вирішення проблеми полягає у відмові від ідеї єдиного однорідного середовища, що розділяється. Наприклад, в розглянутому вище прикладі бажано було б зробити так, щоб кадри, які передають комп'ютери відділу 1, виходили б за межі цієї частини мережі в тому і лише в тому випадку, якщо ці кадри направлені якому-небудь комп'ютеру з інших відділів. З іншого боку, в мережу кожного з відділів повинні потрапляти ті і лише ті кадри, які адресовані вузлам цієї мережі. При такій організації роботи мережі її продуктивність істотно підвищитися, оскільки комп'ютери одного відділу не простоюватимуть в той час, коли обмінюються даними комп'ютери інших відділів.

Рис. 1.8. Суперечність між логічною структурою мережі і структурою інформаційних потоків

Неважко відмітити, що в запропонованому рішенні ми відмовилися від ідеї загального середовища, що розділялося, в межах всієї мережі, хоча і залишили її в межах кожного відділу. Пропускна спроможність ліній зв'язку між відділами не повинна збігатися з пропускною спроможністю середовища усередині відділів. Якщо трафік між відділами складає тільки 20 % трафіку усередині відділу (як вже наголошувалося, ця величина може бути іншій), то і пропускна спроможність ліній зв'язку і комунікаційного устаткування, що сполучає відділи, може бути значно нижче за внутрішній трафік мережі відділу.

Таким чином, розповсюдження трафіку, призначеного для комп'ютерів деякого сегменту мережі, тільки в межах цього сегменту, називається локалізацією трафіку. Логічна структуризація мережі - це процес розбиття мережі на сегменти з локалізованим трафіком.

Для логічної структуризації мережі використовуються такі комунікаційні пристрої, як мости, комутатори, маршрутизатори і шлюзи.

Міст (bridge) ділить середовище передачі мережі, що розділяється, на частини (часто звані логічними сегментами), передаючи інформацію з одного сегменту в іншій тільки в тому випадку, якщо така передача дійсно необхідна, тобто якщо адреса комп'ютера призначення належить іншій підмережі. Тим самим міст ізолює трафік однієї підмережі від трафіку інший, підвищуючи загальну продуктивність передачі даних в мережі. Локалізація трафіку не тільки економить пропускну спроможність, але і зменшує можливість несанкціонованого доступу до даних, оскільки кадри не виходять за межі свого сегменту і їх складніше перехопити зловмисникові.

На рис. 1.9 показана мережа, яка була отримана з мережі з центральним концентратором (див. рис. 1.9) шляхом його заміни на міст. Мережі 1-го і 2-го відділів складаються з окремих логічних сегментів, а мережа відділу 3 - з двох логічних сегментів. Кожен логічний сегмент побудований на базі концентратора і має просту фізичну структуру, утворену відрізками кабелю, що пов'язують комп'ютери з портами концентратора.

Рис. 1.9. Логічна структуризація мережі за допомогою моста

Мости використовують для локалізації трафіку апаратні адреси комп'ютерів. Це утрудняє розпізнавання приналежності того або іншого комп'ютера до певного логічного сегменту - сама адреса не містить ніякої інформації із цього приводу. Тому міст достатньо спрощено представляє ділення мережі на сегменти - він запам'ятовує, через який порт на нього поступив кадр даних від кожного комп'ютера мережі, і надалі передає кадри, призначені для цього комп'ютера, на цей порт. Точної топології зв'язків між логічними сегментами міст не знає. Через це застосування мостів приводить до значних обмежень на конфігурацію зв'язків мережі - сегменти мають бути сполучені так, щоб в мережі не утворювалися замкнуті контури.

Комутатор (switch, switching hub) за принципом обробки кадрів нічим не відрізняється від моста. Основна його відмінність від моста полягає в тому, що він є свого роду комунікаційним мультипроцесором, оскільки кожен його порт оснащений спеціалізованим процесором, який обробляє кадри по алгоритму моста незалежно від процесорів інших портів. За рахунок цього загальна продуктивність комутатора зазвичай набагато вище за продуктивність традиційного моста, що має один процесорний блок. Можна сказати, що комутатори - це мости нового покоління, які обробляють кадри в паралельному режимі.

Обмеження, зв'язані із застосуванням мостів і комутаторів, - по топології зв'язків, а також ряд інших, - привели до того, що у ряді комунікаційних пристроїв з'явився ще один тип устаткування - маршрутизатор (router). Маршрутизатори надійніше і ефективніше, ніж мости, ізолюють трафік окремих частин мережі один від одного. Маршрутизатори утворюють логічні сегменти за допомогою явної адресації, оскільки використовують не плоскі апаратні, а складені числові адреси. У цих адресах є поле номера мережі, так що всі комп'ютери, у яких значення цього поля однакове, належать до одного сегменту, званого в даному випадку підмережею (subnet).