Смекни!
smekni.com

Автоматизація доступу до каналів комп'ютерних мереж (стр. 8 из 16)

Для вертикальної підсистеми вибір кабелю на даний час обмежується трьома варіантами:

Оптоволокно – відмінні характеристики пропускної спроможності, відстані і захисту даних, стійкість до електромагнітних перешкод. Може передавати голос, відео і дані. Порівняно дорогий та складний в обслуговуванні.

Товстий коаксіал – гарні характеристики пропускної спроможності, відстані і захисту даних, може передавати дані. Але з ним складно працювати.

Широкосмуговий кабель, який використовується у кабельному телебаченні – гарні показники пропускної спроможності і відстані. Може передавати голос, відео і дані. Потрібні великі витрати під час експлуатації.


Рис. 2.10. Комутаційні елементи горизонтальної підсистеми

2.4 Оптоволоконний кабель

Основні області застосування оптоволоконного кабелю – вертикальна підсистема і підсистеми кампусів. Однак, якщо потрібен високий ступінь захищеності даних, висока пропускна спроможність або стійкість до електромагнітних перешкод, волоконно-оптичний кабель може використовуватися й у горизонтальних підсистемах. З волоконно-оптичним кабелем працюють протоколи AppleTalk, ArcNet, Ethernet, FDDI і Token Ring, l00VG-AnyLAN, Fast Ethernet, ATM.

Вартість установки мереж на оптоволоконному кабелі для горизонтальної підсистеми виявляється досить високою. Ця вартість складається з вартості мережних адаптерів і вартості монтажних робіт, що у випадку оптоволокна набагато вище, ніж при роботі з іншими видами кабелю.

Застосування волоконно-оптичного кабелю у вертикальній підсистемі має ряд переваг. Він передає дані на дуже великі відстані без необхідності регенерації сигналу. Він має осердя меншого діаметра, тому може бути прокладений у вужчих місцях. Оптоволоконний кабель нечутливий до електромагнітних і радіочастотних перешкод, на відміну від мідного коаксіального кабелю тому, що сигнали є світловими, а не електричними. Це робить оптоволоконний кабель ідеальним середовищем передачі даних для промислових мереж. Оптоволоконному кабелю не страшна блискавка, тому він підходить для зовнішньої прокладки. Він забезпечує більш високий ступінь захисту від несанкціонованого доступу тому, що відгалуження набагато легше знайти, ніж у випадку мідного кабелю (при відгалуженні різко зменшується інтенсивність світла).

Оптоволоконний кабель має і недоліки. Він дорожчий за мідний кабель, дорожче обходиться і його прокладка. Оптоволоконний кабель менш міцний, ніж коаксіальний. Інструменти, які використовуються при прокладці і тестуванні оптоволоконного кабелю, мають високу вартість і складні в роботі. Приєднання конекторів до оптоволоконого кабелю вимагає великого мистецтва і часу, а отже, і грошей.

Для зменшення вартості побудови міжповерхової магістралі на оптоволокні деякі компанії, наприклад AMP, пропонують кабельну систему з одним комутаційним центром. Звичайно, комутаційний центр є на кожному поверсі, а в будинку мається загальний комутаційний центр (рис. 3.10), який з’єднує між собою комутаційні центри поверхів. При такій традиційній схемі і використанні волоконно-оптичного кабелю між поверхами потрібно виконувати досить велике число оптоволоконних з’єднань в комутаційних центрах поверхів. Якщо ж комутаційний центр у будинку один, то всі оптичні кабелі розходяться з єдиної кросової шафи прямо до роз’ємів кінцевого устаткування – комутаторів, концентраторів або мережних адаптерів з оптоволоконними трансиверами.

Товстий коаксіальний кабель також можливо використовувати як магістраль мережі, однак для нових кабельних систем більш раціонально використовувати оптоволоконний кабель тому, що він має більший термін служби і зможе в майбутньому підтримувати високошвидкісні і мультимедійні прикладення. Але для вже існуючих систем товстий коаксіальний кабель служив магістраллю системи багато років, і з цим потрібно рахуватися. Причинами його широкого застосування були: широка смуга пропускання, висока захищеність від електромагнітних перешкод і низьке радіовипромінювання.

Хоча товстий коаксіальний кабель і дешевше, ніж оптоволокно, але з ним набагато складніше працювати. Він особливо чутливий до різних рівнів напруги заземлення, що часто буває при переході від одного поверху до іншого. Цю проблему складно обійти, тому "кабелем номер один" для горизонтальної підсистеми сьогодні є волоконно-оптичний кабель.

Як і для вертикальних підсистем, оптоволоконний кабель є найкращим вибором для підсистем декількох будинків, розташованих у радіусі декількох кілометрів. Для цих підсистем також підходить товстий коаксіальний кабель.

При виборі кабелю для кампусу потрібно враховувати вплив середовища на кабель поза приміщенням. Для запобігання ураження блискавкою краще вибрати для зовнішньої проводки неметалевий оптоволоконний кабель. З багатьох причин зовнішній кабель виробляється в поліетиленовій захисній оболонці високої щільності. При підземній прокладці кабель повинен мати спеціальну вологозахисну оболонку (від дощу і підземної вологи), а також металевий захисний шар від гризунів і вандалів. Вологозахищений кабель має прошарок з інертного газу між діелектриком, екраном і зовнішньою оболонкою.

2.5 Висновок

Детальний аналіз фізичної сутності та порядка використання каналів передачі даних в гетерогенних комп’ютерних мережах дозволив зробити ряд висновків:

використання каналів передачі даних при побудові гетерогенних комп’ютерних мережах відбувається в рамках структурованої кабельної системи;

типова ієрархічна структура структурованої кабельної системи включає: горизонтальні підсистеми; вертикальні підсистеми; підсистему кампусу;

використання структурованої кабельної системи дає багато переваг: універсальність, збільшення терміну служби, зменшення вартості добавлення нових користувачів і зміни місць їх розташування, можливість легкого розширення мережі, забезпечення ефективнішого обслуговування, надійність;

при виборі типу кабелю приймають до уваги такі характеристики: пропускна спроможність, відстань, фізична захищеність, електромагнітна перешкодозахищеність, вартість;

найбільш поширеними є такі типи кабелю: кручена пара (екранована і неекранована), коаксіальний кабель, оптоволоконний кабель (одно- і багатомодовий);

для горизонтальної підсистеми найбільш прийнятним варіантом є неекранована кручена пара, для вертикальної підсистеми і підсистеми кампусу – оптоволоконний кабель або коаксіал;

Крім того, результати аналізу побудованої моделі комп'ютерної мережі за допомогою програмного пакету проектування і моделювання гетерогенних комп'ютерних мереж NetCracker Professional дозволили зробити висновок, про те що вибрані технології і фізичне середовище каналів передачі даних в мережі дозволяють функціонувати даної ГКМ в повному об'ємі покладених на неї функцій по обміну інформацією між хостами мережі.


Розділ 3. Сутність існуючих методів доступу до каналів комп’ютерних мереж

Методи доступу до загального поділюваного середовища передачі даних можна розділити на два великих класи: випадкові і детерміновані.

Випадкові методи доступу передбачають можливість захвату загального поділюваного середовища передачі даних будь-яким вузлом мережі у довільний випадковий момент часу, якщо в даний момент він вважає середовище вільним.

Через це не виключена можливість одночасного захоплення середовища двома або більше станціями мережі, що призводить до помилок передачі даних. Таке явище називається колізією. Таким чином, колізія в середовищі передачі – це спотворення даних, викликане накладенням сигналів при одночасній передачі кадрів декількома станціями.

Детерміновані методи, навпаки, передбачають можливість надання загального середовища в розпорядження вузла мережі за суворо визначеним (детермінованим) порядком. При використанні детермінованих методів колізії неможливі, але вони є більш складними в реалізації і збільшують вартість мережного обладнання.

3.1 Метод доступу до каналів комп’ютерних мереж з перевіркою несучої та виявленням колізій CSMA/CD

Метод багатостанційного доступу до середовища з контролем несучої та виявленням колізій (Carrier Sense Multiply Access / Collision Detection – CSMA/CD) походить від радіомереж.

Дана схема являє собою схему зі змаганням, у якій мережні вузли змагаються за право використання середовища. Вузол, що виграв змагання, може передати один пакет, а потім повинен звільнити середовище для інших вузлів. Якщо вузол вже використовує середовище, всі інші вузли повинні відкласти свої передачі, поки не звільниться середовище. При цьому здійснюється перевірка активності середовища (контроль несучої), коли відсутність активності означає, що середовище вільне. Тоді передачу можуть почати відразу декілька вузлів. Якщо один вузол встиг почати передачу, середовище стає зайнятим, а всі інші вузли, що спізнились, повинні чекати на його звільнення. Але якщо декілька вузлів починають передачу майже одночасно, спостерігається колізія. У цьому випадку всі передавачі повинні припинити свою передачу і зачекати деякий час перед її поновленням. Щоб уникнути повторення колізій, час чекання вибирається випадковим чином.

Рис. 3.1 представляє діаграму станів, яка ілюструє операції канального рівня, що реалізує схему CSMA/CD. Значну частину часу канальний рівень знаходиться в стані прослуховування каналу зв’язку. У цьому стані аналізуються всі кадри, передані фізичним рівнем (середовищем). Якщо заголовок кадру містить адресу отримувача, що збігається з адресою вузла, канальний рівень переходить до стану прийому, під час якого відбувається прийом кадру.