Смекни!
smekni.com

Оптимизация. Методы многомерного поиска (стр. 3 из 4)

Мишке рекомендует выбирать r в интервале значений 2/3<r<1. Он отмечает также, что в случае трех и более переменных большую эффективность обеспечивают не кубические, а звездообразные области.

5. Метод случайного поиска

Выше в этой главе говорилось о громоздкости вычислений в случае многомерного пространства на примере числа значений целевой функции, которые необходимо вычислить, чтобы, пользуясь методом сеток, получить f==0,1, и было показано, что это число растет как степенная функция, показатель степени которой равен размерности пространства. Оригинальный подход, позволяющий обойти эту трудность, предложен Бруксом и основан на случайном поиске. Пусть пространство проектирования представляет собой куб или гиперкуб со стороной, равной единице, и разделено на кубические ячейки путем деления на 10 равных частей каждой стороны куба, соответствующей одному из проектных параметров. При N=2 число ячеек равно 100, при N=3оно равно 100, в общем случае при N измерений число ячеек равно 10

. Вероятность того, что выбранная наугад ячейка войдет в число 10% наиболее перспективных ячеек, равна 0,1, так как при N=1 нас будет интересовать одна ячейка из 10, при N=2 - одна из десяти лучших при общем количестве ячеек 100 и т.д. Вероятность того, что мы пропустим одну из 10% наиболее перспективных ячеек, составит 0,9. Если случайным образом выбрать две ячейки, то вероятность пропуска будет 0,9
, т. е 0,81. Вообще вероятность нахождения по крайней мере одной ячейки из наиболее перспективных, доля которых равна f, после N попыток составит Р=1- (1-f)
.

В таблице 1 указано, сколько ячеек надо выбрать случайным образом, чтобы обеспечить заданную вероятность при заданной доле наиболее перспективных ячеек. Из нее видно, что при случайной выборке 44 ячеек вероятность достижения f=0,1 составит 99%.

Это очень неплохо, если вспомнить, что для 100% -ного обеспечения целевую функцию в случае пяти переменных пришлось бы вычислить 2 476 099 раз.


Таблица 1.


F
ВЕРОЯТНОСТЬ
0.80 0.90 0.95 0.99
0.1 16 22 29 44
0.05 32 25 59 90
0.01 161 230 299 459
0.005 322 460 598 919

Метод случайного поиска имеет два преимущества. Во-первых, он пригоден для любой целевой функции независимо от того, является она унимодальной или нет. Во-вторых, вероятность успеха при попытках не зависит от размерности рассматриваемого пространства. Хотя этот метод не позволяет непосредственно найти оптимальное решение, он создает подходящие предпосылки для применения в дальнейшем других методов поиска. Поэтому его часто применяют в сочетании с одним или несколькими методами других типов. Функция Random-случайное число из [0,1]

Один из возможных примеров алгоритмов.

f (x) - > min, xÎRn

x0-начальное приближение (массив [1: n])

Будем считать, что нам известна функция

minf (j (q)), которая вычисляется qmin: j (qmin) =minj (q)

r: =f (x0); r1: =r+2*e; x: =x0;

пока abs (r1-r) >= e

нц

r1: =r; x1: =x;

Для i от 1 до n

нц

l [i]: = random;

x [i]: =x [i] +q*R [i] ;

кц

j (q): =f (x);

qmin: = minf (j (q));

x: =x1;

для i от 1до n

нц

x [i]: =x [i] + qmin* l [i] ;

кц

r: =f (x);

кц

6. Градиентные методы

Во многих алгоритмах многомерной оптимизации так или иначе используется информация о градиентах. Проиллюстрируем это положение следующим простым примером.

Представим себе, что альпинисту завязали глаза и сказали, что он должен добраться до вершины "унимодальной" горы. Даже ничего не видя, он может это сделать, если все время будет двигаться вверх. Хотя любая ведущая вверх тропа в конечном счете приведет его к вершине, кратчайшей из них будет самая крутая, если, правда, альпинист не натолкнется на вертикальный обрыв, который придется обходить. (Математическим эквивалентом обрыва на поверхности, образуемой целевой функцией, являются те ее места, где поставлены условные ограничения) Предположим пока, что задача оптимизации не содержит ограничений.

Позднее мы включим их в схему поиска.

Метод оптимизации, в основу которого положена идея движения по самой крутой тропе, называется методом наискорейшего подъема или наискорейшего спуска. Вектор градиента перпендикулярен линии уровня и указывает направление к новой точке в пространстве проектирования.

Отметим, что градиентный метод в отличие от метода касательной к линии уровня можно использовать применительно к любой унимодальной функции, а не только тех, у которых это свойство явно выражено. Чтобы лучше понять идею градиентных методов, подробнее остановимся на свойствах градиентов. Рассмотрим систему независимых единичных векторов e

,e
,e
,…,e
, направленных вдоль осей координат x
,x
,x
,…,x
, являющихся в то же время проектными параметрами.

Вектор градиента произвольной целевой функции F (x

,x
,x
,…,x
) имеет вид:

(¶F/¶x

) e
+ (¶F/¶x
) e
+…. + (¶F/ ¶x
) e
,

где частные производные вычисляются в рассматриваемой точке. Этот вектор направлен вверх, в направлении подъема; обратный ему вектор указывает направление спуска. Единичный вектор градиента часто представляют в виде v

e
+v
e
+v
e
+…+v
e
, где

v

=
.

Иногда характер целевой функции бывает достаточно хорошо известен, чтобы можно было вычислить компоненты вектора градиента путем непосредственного дифференцирования. Если таким способом частные производные получить не удается, то можно найти их приближенные значения в непосредственной окрестности рассматриваемой точки:

Здесь D - небольшое смещение в направлении x

. Эту формулу часто называют "приближением секущей". Полученную информацию о направлении градиента можно использовать различным образом для построения алгоритма поиска.

Один из возможных примеров алгоритмов.

f (x) - > min, xÎRn

x0-начальное приближение (массив [1: n])

Будем считать, что нам известна функция

minf (j (q)), которая вычисляется qmin: j (qmin) =minj (q)


r: =f (x0); r1: =r+2*e; x: =x0;

Пока abs (r-r1) >= e

нц

r1: =r;

x1: =x;

Для i от 1 до n

нц

l [i]: = ¶f (x1) / ¶x [i] ;

x [i]: =x [i] +q*l [i] ;

кц

j (q): =f (x);

qmin: = minf (j (q));

x: =x1;

Для i от 1 до n

x [i]: =x [i] +qmin*l [i] ;

кц

r: =f (x);

кц

6.1 Ступенчатый наискорейший подъем

Ряд методов поиска основан на смещении на постоянный шаг в направлении градиента с последующим вычислением целевой функции. Если ее величина оказывается больше предыдущей, вычисляется градиент в новой точке, и вся процедура повторяется, причем часто при этом шаг увеличивают. Если же величина целевой функции не изменяется или убывает, то шаг смещения от предыдущей точки уменьшают и повторяют всю процедуру вычислений. Так поступают до тех пор, пока дальнейшее уменьшение шага уже не приводит к улучшению результата.

Наискорейший подъем с использованием одномерного поиска

В некоторых методах поиска информация о градиенте используется для ведения одномерного поиска в направлении наискорейшего подъема или спуска, причем используется соотношение