Смекни!
smekni.com

Проектирование аппаратуры передачи данных (стр. 3 из 6)

а)

Рисунок 3.3.2 – ЧМ–модулятор со ступенчатой аппроксимацией сигнала: а – структурная схема; б – временные диаграммы

Коэффициент искажения синусоиды за счет аппроксимации Ки определяется на основании спектрального анализа:

Kи = 2π/( kст -

) (3.3.1)

Так как коэффициент искажения синусоидального сигнала должен быть не более 12%, определим необходимое число ступенек аппроксимирующего сигнала

kст ≥ 2π/(Ки

) = 2π/(0,12
) = 15,1 (3.3.2)

Округлим kст до ближайшего большего целого четного числа: kст = 16.

Количество ступенек сигнала для прямого и обратного каналов совпадают. Высота i–й ступеньки аппроксимированной синусоиды в относительных единицах определяется по формуле:

Ui = sin [ 360 (i+0,5) / kст ], i = 0,1,2,…, ( kст - 1 ) (3.3.3)

Рассчитав данные значения, построим ступенчатую аппроксимацию синусоидального сигнала, изображенную на рисунке 3.3.3.

Рисунок 3.3.3 – Ступенчатая аппроксимация синусоидального сигнала

При использовании ИМС более высокой степени интеграции, а также в микропроцессорных УПС для формирования синусоидальных сигналов целесообразно использовать построенное запоминающее устройство (ПЗУ) и цифроаналоговый преобразователь (ЦАП). Обычно каждый из этих функциональных узлов выполняется в виде отдельной ИМС. Схема преобразования цифровой последовательности в синусоидальный сигнал приведена на рис 3.3.4. Адресная шина ПЗУ подключается к выходам двоичного счетчика СТ2, вход которого соединен с выходом УДЧ модулятора, либо к адресной шине микропроцессора УПС. В ячейки ПЗУ в цифровом виде заносятся значения напряжений синусоиды, соответствующие своим фазовым углам ∆φ (см. рис. 3.3.3) Количество слов, хранимых в ПЗУ, равно kст . Емкость ПЗУ можно уменьшить до kст/4, при этом существенно усложнится схема формирования адресов. Разрядность слова ПЗУ np зависит от точности воспроизведения ступенчатого напряжения. На практике достаточно принять np=8 с учетом знакового разряда, что обеспечивает погрешность формирования напряжения менее 1%.

Рисунок 3.3.4 – Цифровой формирователь синусоидальных сигналов на основе ПЗУ

В микропроцессорных УПС адресации ПЗУ осуществляется программным способом. Время нахождения адреса ta на соответствующей шине микропроцессора определяется программой и зависит от частоты формируемой синусоиды fi вых выходного сигнала

ta = 1/( fi вых kст) (3.3.4)

3.4 Разработка приемной части УПС

Структурная схема приемной части УПС изображена на рисунке 3.4.1


Рисунок 3.4.1 – Структурная схема приемной части УПС

Демодуляторы ЧМ-сигналов современных систем передачи данных строятся преимущественно на цифровых элементах. Входной сигнал в схеме демодулятора преобразуется в прямоугольную последовательность импульсов, постоянная составляющая которой зависит от частоты демодулируемого колебания. Помехоустойчивость таких демодуляторов несколько ниже, чем у частотных дискриминаторов с колебательными контурами. Высокая стабильность параметров схемы, отсутствие необходимости регулировок в процессе эксплуатации обусловили широкое применение их на практике.

Функциональная схема одного из вариантов ЧМ – демодулятора приведена на рисунке 3.4.2. В её состав входит усилитель-ограничитель (УО) с нулевым порогом ограничения, формирователь коротких импульсов в моменты переходов входного сигнала через нуль (ФКИ), одновибратор (ОВ), фильтр низких частот (ФНЧ) и пороговое устройство (ПУ). Временная диаграмма, иллюстрирующая работу ЧМ- демодулятора, показана на рис. 3.4.3. Импульс фиксированной длительности формируется ОВ в момент пресечения входным сигналом нулевого уровня. Длительность импульса должна быть меньше длительности периода верхней частоты демодулируемого сигнала. Из прямоугольной последовательности импульсов ОВ ФНЧ выделяет постоянную составляющую, которая преобразуется ПУ в посылки постоянного тока.


Рисунок 3.4.3 – Временные диаграммы ЧМ–демодулятора

Для формирования коротких импульсов целесообразно использовать схему цифрового дифференциального выпрямителя (см. рис 3.4.4). В качестве ОВ можно применить схему ждущего мультивибратора, выполненного на логических элементах или на основе счетчика импульсов с предварительной установкой. Принцип действия ОВ на основе счетчика заключается в том, что импульсом нулевого пересечения в счетчик заносится число, в результате чего на его выходе появится положительный потенциал, длительность которого определяется выбором заносимого в счетчик числа, емкостью счетчика и частотой следования тактовых импульсов. Схема ОВ на основе счетчика будет более громоздкой, но стабильность параметров импульса значительно выше.


Рисунок 3.4.4 - Схема цифрового дифференциального выпрямителя

Параметры ОВ выбираются таким образом, чтобы при поступлении на вход демодулятора сигнала с частотой

fср = (fнч + fвч)/2 (3.4.1)

напряжение на его выходе имело симметричную форму (меандр), здесь fнч и fвч – нижняя и верхняя частоты демодулируемого сигнал. Длительность импульса ОВ равна

tов = 1/ (2 fср) (3.4.2)

Как видно из временной диаграммы, абсолютная величина краевых искажений сигналов Θ на выходе демодулятора составляет примерно 1.5tов. Задавая допустимую относительную величину краевых искажений δдоп, можно определить требования к средней частоте ЧМ – сигнала. Так как

δдоп ≤ 1.5tов / τ0 = 1.5В/(2 fср) (3.4.3)

то

fср ≥ 0.75В/ δдоп (3.4.4)

Для уменьшения вносимых демодулятором искажений нужно увеличить среднюю частоту ЧМ – сигнала, поэтому такой демодулятор следует включать совместно с преобразователем частоты. В процессе расчета параметров ЧМ – демодулятора необходимо рассчитать частоту преобразователя fпч, длительность импульса одновибратора и параметры ФНЧ.

Рассчитаем параметры ЧМ – демодулятора для прямого канала, если fнч = 1030 Гц, fвч = 1970 Гц, скорость модуляции В=600 бод. Допустимая величина краевых искажений δдоп = 5%

Из (3.4.4) найдём требуемую среднюю частоту ЧМ – сигнала, поступающего на вход демодулятора:

fср ≥ 0.75*600/ 0.05 = 9000Гц

Частота модуляции промежуточного преобразователя частоты определяется из соотношения

fпч = fдоп ± (fнч + fвч)/2 = 15±1.5 кГц (3.4.5)

Плюс берется в случае выделения в преобразователе нижней боковой составляющей, а минус – верхней. Принимаем fпч = 10.5 кГц. Длительность импульса одновибратора находим из (4.6) с учетом того, что fср = fср, тогда

tов = 1/ (2 *9000) = 5.6*10-5 с.

Параметры ЧМ – демодулятора для обратного канала, если fнч = 360 Гц, fвч = 420 Гц, скорость модуляции В=75 бод. Допустимая величина краевых искажений δдоп = 5%

Из (3.4.4) найдём требуемую среднюю частоту ЧМ – сигнала, поступающего на вход демодулятора:

fср ≥ 0.75*75/ 0.05 = 1125Гц.

Частота модуляции промежуточного преобразователя частоты определяется из соотношения

fпч = fдоп ± (fнч + fвч)/2 = 1125±390 кГц.

Плюс берется в случае выделения в преобразователе нижней боковой составляющей, а минус – верхней. Принимаем fпч = 1515 кГц. Длительность импульса одновибратора находим из (4.6) с учетом того, что fср = fср, тогда

tов = 1/ (2 *1125) = 4.4*10-4 с.

Для правильной фиксации единичных элементов при наличии краевых искажений или дроблений будем использовать регистрирующее устройство (УР) на основе принципа стробирования.

Метод стробирования заключается в том, что значение единичного элемента проверяется в момент времени, наименее подверженный искажениям, то есть в середине посылки, путем подачи стробирующего импульса (строба) на ключевые элементы. В качестве стробов используется последовательность коротких импульсов с периодом следования τ0, вырабатываемая специальной схемой синхронизации. При использовании в качестве регистратора синхронного D - триггера схема регистрации имеет вид, изображенный на рисунке 3.4.5. Временная диаграмма функционирования устройства регистрации со стробированием показана на рисунке 3.4.6.

Рисунок 3.4.5 – Схема регистрации единичных элементов стробированием

Рисунок 3.4.6 – Временные диаграммы регистрации стробированием


4 Разработка Устройства защиты от ошибок

4.1 Выбор способа защиты от ошибок

Основным способом повышения верности передачи дискретных сообщений является введение в передаваемую последовательность избыточности с целью обнаружения и исправления ошибок в принятой информации. Все устройства защиты от ошибок (УЗО) делятся на две группы: симплексные (без обратной связи) и дуплексные (с обратной связью).