Смекни!
smekni.com

Разработка устройства кодирования-декодирования 32-х разрядных слов методом Хемминга (стр. 2 из 10)

Схема на рис. 1.1 может видоизменяться в зависимости от конкретной реализации системы связи. В каналах действуют искажения сигналов, шумы, помехи, которые в дискретном канале проявляются в виде перехода одного значения символа в другое - ложное (событие, состоящее в появлении ошибки) или неиспользуемое (событие, которое называют стиранием). В зависимости от характера ошибок различают дискретные каналы: симметричный (все ложные значения символов равновероятны), асимметричный (некоторые ложные значения символов обладают большей вероятностью), без памяти (искажение символа не зависит статистически от искажения другого выходного символа), с памятью (искажение символа выходной последовательности зависит статистически от искажения другого символа той же последовательности), со стираниями (наряду с ошибками имеют место стирания символов).

Любой канал связи с ограниченными полосой частот, временем передачи и динамическим диапазоном (значений амплитуд) обладает конечной пропускной способностью. Теоретически пропускная способность - это максимальное число переданных двоичных единиц (бит) в единицу времени при сколь угодно малой вероятности ошибок. Реально получаемое число передаваемых бит в единицу времени называют скоростью передачи. При неограниченно малой вероятности ошибок скорость передачи всегда меньше пропускной способности. В канале с ошибками максимальное значение скорости получают путем использования помехоустойчивого кодирования. Последнее требует введения избыточности в передаваемый сигнал: по времени, частоте или амплитуде. Если код согласован с каналом, т. е. код позволяет исправлять наиболее вероятные ошибки, введенная избыточность становится оправданной. Если код не согласован с каналом, ошибки могут быть не только не исправлены, но и размножены кодом. В этом случае применение помехоустойчивого кодирования принесет не пользу, а вред. Для согласования кода с каналом связи необходимо иметь максимальный объем сведений о возможных мешающих влияниях в каналах.

Рис. 1.2 — Классификация помехоустойчивых кодов

К настоящему времени разработано иного различных помехоустойчивых кодов, отличающихся друг от друга основанием, расстоянием, избыточностью, структурой, функциональным назначением, энергетической эффективностью, корреляционными свойствами, алгоритмами кодирования и декодирования, формой частотного спектра. На рис 1.2 приведены типы кодов, различающиеся по особенностям структуры, функциональному назначению, физическим свойствам кода как сигнала. Наиболее важный подкласс непрерывных кодов образуют сверточные коды, отличающиеся от других непрерывных кодов методом построения и более широкой областью применения. В общем случае чем длиннее код при фиксированной избыточности, тем больше расстояние и тем выше помехоустойчивость кода. Однако длинные коды сложно реализуются. Составные коды дают компромиссное решение задачи, из них основное значение имеют каскадные коды и коды произведения. Как правило, каскадный код состоит из двух ступеней (каскадов): внутренней и внешней. По линии связи сигналы передают внутренним кодом nвт, символьные слова которого являются символами внешнего кода длины nвш. Основание внешнего кода равно qвтk. Коды произведения строят в виде матрицы, в которой строки суть слова одного кода, а столбцы - того же или другого кода. При формировании каскадного кода входную информационную последовательность символов разбивают на блоки по kвт символов в каждом, каждый блок сопоставляют с информационным символом внешнего кода из алфавита, содержащего qвтk значений символов. Затем kвш информационных символов внешнего кода преобразуют в блоки из nвш символов внешнего кода и, наконец, блоки из kвт информационных символов внутреннего кода преобразуют в блоки из nвт символов внутреннего кода. Возможны различные варианты: внешний и внутренний коды - блочные, внешний блочный - внутренний сверточный, внешний сверточный - внутренний блочный, внешний и внутренний сверточные.

Один из наиболее распространенных методов формирования кода произведения заключается в последовательной записи по k1 символов входной информационной последовательности в k2 строк матрицы (например, в ячейки памяти ОЗУ), добавлении избыточных символов по n1-k1 в каждую строку и по n2-k2 в каждый столбец, после чего в последовательность символов кода считывают по строкам или столбцам из матрицы. Физическим аналогом кода произведения является, в частности, частотно-временной код, у которого строки располагаются вдоль оси времени, а столбцы - по оси частот.

Параметры составных кодов: каскадных - n=nвшnвт, k=kвшkвт, d=dвшdвт; произведения - n=n1n2, k=k1k2, d=d1d2. Производные коды строят на основе некоторого исходного кода, к которому либо добавляют символы, увеличивая расстояние (расширенный код), либо сокращают часть информационных символов без изменения расстояния (укороченный код), либо выбрасывают (выкалывают) некоторые символы (выколотый, или перфорированный код). Код Хэмминга дает пример процедуры расширения, увеличивающей расстояние кода с 3 до 4. Необходимость в выкалывании возникает в результате построения на основе исходного кода другого, менее мощного, более короткого кода с тем же расстоянием. При более широкой трактовке термина "производный код" к этому классу можно отнести все коды, полученные из исходного добавлением или исключением как символов, так и слов.

Формально деление кодов на двоичные и недвоичные носит искусственный характер; по аналогии следует выделять троичные, четверичные и другие коды большего основания. Оправдывается такое деление усложнением алгоритмов построения, кодирования и декодирования недвоичных кодов. При прочих равных условиях желательно, чтобы информационные и избыточные символы располагались отдельно. В систематических кодах это условие выполняется. В циклических кодах каждое слово содержит все свои циклические перестановки. Все n циклических перестановок (слова длины n) образуют цикл. В квазициклических кодах цикл образуется на числе символов n-1 или, реже, n 2. Циклические коды важны как с точки зрения математического описания, так и для построения и реализации кода.

Ошибки в каналах связи имеют самое различное распределение, однако для выбора помехоустойчивого кода целесообразно разделить все возможные конфигурации ошибок на независимые (некоррелированные) и пакеты (коррелированные ошибки). На практике приходится учитывать качество интервалов между пакетами: они могут быть свободными от ошибок или же содержать случайные независимые ошибки. Под корреляционными подразумевают коды, обладающие хорошими корреляционными свойствами, важными при передаче сигналов вхождения в связь, для повышения защищенности от некоторых видов помех, извлечения сигналов из интенсивных шумов, обеспечения многостанционного доступа, построения асинхронно-адресных систем связи. Корреляционные коды включают в себя пары противоположных сигналов с хорошей функцией автокорреляции (метод внутриимпульсной модуляции), импульсно-интервальные коды, имеющие на фиксированном интервале времени постоянное для всех слов кода число импульсов с неперекрывающимися (при любом взаимном сдвиге слов во времени) значениями интервалов между импульсами, ансамбли сигналов с хорошими взаимокорреляционными свойствами.

Особый класс образуют частотно-компактные коды, предназначенные для сосредоточения энергии сигнала в возможно более узкой полосе частот. Столь общая постановка задачи понимается в различных системах связи по-разному: в проводных линиях и линейных трактах, содержащих полосно-ограничивающие фильтры с крутыми фронтами, необходимо основную энергию сигналa "отодвинуть" от крайних частот к центру полосы пропускания целью уменьшения межсимвольных искажений; в сетях радиосвязи с жесткими ограничениями по электромагнитной совместимости радиосредств от кода требуется значительно (на десятки децибел) уменьшить уровень внеполосных излучений. Построение кодирование и декодирование частотно-компактных кодов существенно зависят от метода модуляции.