Смекни!
smekni.com

Свойства информации. Единицы измерения количества информации (стр. 17 из 24)

Основными устройствами для быстрой передачи информации на большие расстояния в настоящее вре­мя являются телеграф, радио, телефон, телевизионный передатчик, телекоммуникационные сети на базе вы­числительных систем.

Под компьютерной сетью понимают систему рас­пределенных на территории аппаратных, программ­ных и информационных ресурсов (средств ввода/вы­вода, хранения и обработки информации), связанных между собой каналами передачи данных. При этом обеспечивается совместный доступ пользователей к информации (базам данных, документам и т.д.) и ресурсам (жесткие диски, принтеры, накопители CD-ROM, модемы, выход в глобальную сеть и т.д.).

По территориальному признаку сети делят на ло­кальные, региональные и глобальные. Локальные сети (LAN, LocalAreaNetwork'} охватывают ресурсы, рас­положенные друг от друга не более чем на несколько километров. Региональные сети охватывают город, рай­он, область, небольшую республику. Глобальные сети охватывают всю страну, несколько стран и целые кон­тиненты (например, сеть Интернет). Иногда выделя­ют корпоративные сети, где важно защитить инфор­мацию от несанкционированного доступа.

Основными свойствами локальной сети являются:

• высокая скорость передачи, большая пропускная способность;

• низкий уровень ошибок передачи;

• эффективный, быстродействующий механизм уп­равления обменом;

• ограниченное, точно определенное число компью­теров, подключаемых к сети.

Очень важным является вопрос топологии локаль­ной сети. Под топологией компьютерной сети обыч­но понимают физическое расположение компьютеров сети относительно друг друга и способ соединения их линиями. Топология определяет требования к обору­дованию, тип используемого кабеля, методы управле­ния обменом, надежность работы, возможность рас­ширения сети.

Каждый компьютер, который функционирует в ло­кальной сети, должен иметь сетевой адаптер (сете­вую карту). Функцией сетевого адаптера является пе­редача и прием сигналов, распространяемых по кабе­лям связи. Кроме того, компьютер должен быть осна­щен сетевой операционной системой.

При конструировании сетей используют следующие виды кабелей:

• неэкранированная витая пара. Максимальное рас­стояние, на котором могут быть расположены компью­теры, соединенные этим кабелем, достигает 300 м. Скорость передачи информации — от 10 до 155 Мбит/с;

• экранированная витая пара. Скорость передачи информации — 16 Мбит/с на расстояние до 90 м. Обладает лучшей по сравнению с неэкранированной витой парой помехозащищенностью;

• коаксиальный кабель. Позволяет передавать ин­формацию на расстояние до 2000 м со скоростью 2—44 Мбит/с;

• оптоволоконный кабель. Позволяет передавать информацию на расстояние до 10 000 м со скоростью до 10 Гбит/с.

В отличие от локальных сетей в глобальных сетях нет какого-либо единого центра управления. Основу сети составляют десятки и сотни тысяч компьютеров, соединенных теми или иными каналами связи.

Протокол обмена — это набор правил (соглаше­ние, стандарт) передачи информации в сети. Прото­колы условно делятся на базовые (более низкого уров­ня) , отвечающие за передачу информации любого типа, и прикладные (более высокого уровня), отвечающие за функционирование специализированных служб.

Программное обеспечение можно разделить на два класса:

• программы-серверы, которые размещаются на узле сети, обслуживающем компьютер пользователя;

• программы-клиенты, размещенные на компью­тере пользователя и пользующиеся услугами сервера. Подключение к глобальной сети может осущест­вляться одним из способов:

• удаленный доступ по коммутируемой телефон­ной линии. В этом случае в распоряжении пользовате­ля должен быть модем, который преобразует подавае­мую на него компьютером цифровую информацию в аналоговый сигнал {модуляция), и телефон. Аналого­вый сигнал передается по телефонной линии, а модем на принимающей стороне совершает обратное преоб­разование информации (демодуляцию}. Скорость, с которой будет производиться обмен информацией, определяется прежде всего скоростью передачи моде­ма пользователя и качеством телефонной линии. Для предупреждения искажения информации в процессе ее передачи и приема модем обычно работает в режи­ме коррекции ошибок, когда информация передается маленькими порциями, вычисляется контрольная сум­ма, которая также передается. Если отмечается иска­жение какой-то порции информации, ее передача пов­торяется;

• прямой доступ по выделенному каналу. Данный способ дороже, чаще его используют те или иные орга­низации. В качестве выделенных каналов могут исполь­зоваться коаксиальные и оптоволоконные кабели, ра­диорелейные линии, спутниковая связь.

Желательно изложить

Базовые топологии локальной сети: шина, звезда, кольцо. Достоинства и недостатки топологий.

Ссылка на материалы вопроса

1. "Информатика" № 19, с. 3 — 5, № 20, с. 3 — 7/ 2002.

2. Новиков Ю.В., Кондратенко СВ. Локальные ком­пьютерные сети: архитектура, алгоритмы, проектиро­вание. М.: ЭКОМ, 2001, 312 с.

2. Представление и кодирование информации с помощью знаковых систем. Алфавитный подход к определению количества информации

Базовые понятия

Знак, знаковая система, кодирование информации, количество информации, бит, алфавитный подход, ве­роятность.

Обязательно изложить

Под знаковой системой понимается набор знаков — одного типа или же нескольких типов вместе с систе­мой правил, регулирующих сочетаемость знаков при создании сообщения. Например, устная речь — сис­тема, знаками которой являются фонемы. Их чередо­вание и группировка по определенным правилам соз­дают членораздельную речь, т.е. сообщение, содержа­щее определенную информацию. В музыке для созда­ния сообщений также используются фонемы, но с другими правилами чередования и композиции. В гра­фических сообщениях знаками являются графические примитивы, сочетаемость которых подчиняется стро­гим правилам. Навязывая определенные правила соче­тания, из примитивов можно создать знаки, позволяю­щие создавать письменные сообщения. В зависимости от выбранной совокупности правил их композиции можно получить письменную речь, язык программи­рования, систему счисления и т.д. Таким образом, чис­ловая, символьная, графическая и звуковая информа­ция представляется с помощью знаковых систем. Для обонятельной и осязательной информации пока не определены система знаков и правила композиции, однако мы убеждены, что таковые существуют.

С этих позиций кодирование информации можно рассматривать как запись сообщения в другой знако­вой системе, или в той же знаковой системе, но с измененными правилами композиции, или в другой знаковой системе с измененными правилами компо­зиции. Пример первой ситуации — кодирование чис­ловой информации путем перевода числа из десятич­ной системы счисления в двоичную. Пример второй ситуации — шифрование, когда устанавливаются пра­вила замены одних символов другими, что и приводит к новым правилам композиции при записи сообще­ний. Третий случай реализуется при кодировании не­прерывных видов информации: графической и звуко­вой, — когда дискретизация (задание кодировочной

таблицы), по существу, создает новые правила компо­зиции двоичных разрядов, запрещая последовательно­сти, не представленные в кодировочной таблице.

Многообразие знаковых систем, используемых для записи и кодирования сообщений, приводит к невоз­можности использовать для измерения количества информации бит, т.е. количество информации, содер­жащееся в сообщении, уменьшающем неопределен­ность наших знаний в два раза. В силу специфичности информации схемы определения количества информа­ции, связанные с ее содержательной стороной, оказы­ваются не универсальными.

Универсальным оказывается алфавитный подход к измерению количества информации. В этом подходе сообщение, представленное в какой-либо знаковой системе, рассматривается как совокупность сообще­ний о том, что заданная позиция в последовательнос­ти знаков занята равновероятно любым знаком сис­темы. Угадывание этого знака производится по алго­ритму последовательного деления количества знаков N, образующих систему, пополам. Поскольку, выяс­няя, в какой половине находится угадываемый знак, мы получаем информацию в один бит (по определе­нию), количество информации, содержащееся в од­ном символе (информационный вес — г), определя­ется решением показательного уравнения (Р.Хартли):

Полная информация, содержащаяся в сообщении, определяется по формуле:

Количество информации = К • г,

где К — количество знаков в сообщении. Напри­мер, для двоичной знаковой системы N = 2, т.е. 1=1 бит, так что количество информации совпадает с чис­лом двоичных знаков. В случае системы знаков, кото­рая используется для изображения блок-схем, N = 8, т.е. г = 3, так что блок-схема, состоящая из 5 элемен­тов (начало, ввод информации, обработка, вывод ин­формации, конец), содержит информацию 15 бит. В случае знаковой системы, основанной на таблице ASCII, N = 256, z — 8 бит (1 байт), так что сообщение, со­стоящее из 11 символов (слово — информатика), содержит 11 байт информации.

В реальных сообщениях, как правило, предположе­ние о том, что в заданной позиции с одинаковой веро­ятностью может находиться любой знак системы, не выполняется. Для того чтобы обобщить алфавитный подход, представим формулу Хартли иначе. Заметим, что вероятность р обнаружения заданного знака в за­данной позиции в предположении равной вероятнос­ти равна р — 1/N. Вспоминая определение логариф­ма, запишем формулу Хартли в виде:

i — log2N — — log.jp.

Количество информации в сообщении, состоящем из К знаков, равно (— К log^p).

Если вероятность появления знака номера п равна рп и в сообщении он встречается Кп раз, естественно предположить, что количество информации в сообще­нии, связанное с этим знаком, равно (— K^logy^), a полное количество информации в сообщении должно определяться равенством (К.Шеннон):