Смекни!
smekni.com

Система моделювання Electronics Workbench (стр. 8 из 10)

AF — показник ступеня у формулі для фліккер-шума; TNOM — температура діода, °С.

Мал.3.49. Діалогове вікно параметрів діодів.


а)б) в) г)

Мал.3.50. Еквівалентні схеми діода при розрахунку на постійному струмі(а), в діапазоні частот (б,в) і схема для дослідження прямої гілки ВАХ(г).

Еквівалентні схеми діода показані на мал. 3.50, а, б, на яких позначено: А — анод, ДО — катод, I — джерело струму, Rs — об'ємний опір, З — ємність переходу, Gmin — провідність, обумовлена витоками (у EWB 5.0 задається в діалоговому вікні, див. мал. 1.17). Вольт-амперна характеристика <ВАХ) діода визначається наступними виразами [67]:

для прямої галузі

I=I0(exp(U/(N*Ut))-1)+U*Gmin для U≥-5N*Ut;

для зворотньої гілки

I=I0(exp(U/(N*Ut))-1)+U*Gminдля 0≥U≥-5N*Ut;

I=-I0+Uч*Gmin для-BV<U<-5N*Ut;

I=-IBV для U=-BV;

I=I0{exp(-(U+BV)/(N*Ut)))-1)+BV/Utдля U<-BV}.

Тут IО = Is — зворотний струм діода при температурі TNOM; N — коефіцієнт інжекції; BV, IBV — напруга і струм пробою; U, — температурний потенціал переходу; U — напруга на діоді.

При розрахунку перехідних процесів використовується еквівалентна схема діода (див. Рис. 3.50, б), для якої ємність переходу визначається за допомогою виражень [67]:

С=τ(di/dU)+CJO(1-U/Ut)-m для U<FC*VJ;

С=τ(di/dU)+CJO(F3-mU/Ut)/F2 для U≥FC*VJ;

У приведених формулах т — час переносу заряду; CJO — бар'єрна ємність при нульовому зсуві на переході; VJ — контактна різниця потенціалів; m = 0,33...0,5 — параметр переходу.

При малих рівнях сигналів використовується линеалізована еквівалентна схема (мал. 3.50, в), на якій провідність G = dl/d = Ioexp(U/(NUt))/(NUt). При цьому ємність переходу визначається формулами [67]:

С=τG+CJO(1-U/Ut)-m для U<FC*VJ;

С=τG+CJO(F3-mU/Ut)/F2 для U≥FC*VJ;

Дослідження прямої галузі ВАХ діодів може бути проведене за допомогою схеми на мал. 3.50, м. Вона складається з джерела струму I, амперметра А (можна обійтися і без нього, оскільки регістрований струм точно дорівнює що задається), досліджуваного діода VD і вольтметра V для виміру напруги на діоді.


а)

б)

Мал.3.51. Схема характеріографа (а), отримана на ньому ВАХ діода (в) і схема для дослідження його зворотньої гілки.

Процес дослідження ВАХ може бути автоматизований за допомогою характеристик осцилографа (мал. 3.51, а, в), у якому формування зображення ВАХ виконується в режимі розгорнення В/А осцилографа, при цьому використовуються сигнал з функціонального генератора і з навантаження діода.

Для дослідження зворотної галузі ВАХ діода використовується схема I див. мал. 3.51, б. У ній замість джерела струму використовується джерело напруги &bsol;]&bsol; I із захисним резистором Rz для обмеження струму через діод у випадку його пробою.

Крім одиночних діодів, у бібліотеці EWB мається також діодний місток, I для якого можна додатково задати коефіцієнт емісії N (Emission I Coefficient). Світлодіод — спеціально сконструйований діод, у якому передбачена можливість висновку світлового випромінювання з області переходу крізь прозоре вікно в корпусі.

При проходженні через діод струму в прилягаючим до переходу областях напівпровідника відбувається інтенсивна рекомбінація носіїв зарядів — електронів і дірок. Частина вивільнюваної енергії виділяється у виді квантів світла. У залежності від ширини забороненої зони напівпровідника випромінювання може мати довжину хвилі або в області видимого світла, або невидимого інфрачервоного випромінювання. Випромінювання переходів на основі арсеніду галію має довжину хвилі близько 0,8 мкм. Переходи з карбіду кремнію або фосфіду галію випромінюють видиме світло в діапазоні від червоного до блакитного кольору. Найважливішими параметрами світлодіода є яскравість, вимірювана в нітах при визначеному значенні прямого струму, і колір світіння (або спектральний склад випромінювання). Для світлодіода додатково вказується мінімальний струм у прямому напрямку Turn-on current (Ion), при перевищенні якого світлодіод запалюється. Для виміру ВАХ світлодіодів можна використовувати приведені вище схеми. Перемикаючі діоди з р-п-р-п- або п-р-п-р-структурами — це тірістори [86]. Тиристори, що мають висновки від крайніх електродів, називають діністорами, а прилади з третім висновком (від одного із середніх електродів) — тріністорами. Крім того, до класу тірісторів відносяться сімістори — симетричні діністори (діаки), симетричні тріністори (тріаки) і досить рідкий тип діністора — діод Шоклі, у якому структура п-р-п організована за рахунок наявності в р-гс-переході пасток, формованих шляхом легування. На мал. 3.52 приведені позначення перемикаючих діодів, моделі яких маються в програмі EWB 3.1: (ліворуч праворуч) діод Шоклі, симетричний діністор (діак, двохнаправлений діністор), тріністор (тріодний тірістор) і симетричний тріністор (тріак, сімістор).

Мал.3.52. Діоди, які самі перемикаються.


Для перемикальних діодів задаються значення наступних параметрів (для EWB 5.0 їхні позначення вказуються в квадратних дужках):

Saturation current Is [IS], A — зворотний струм діністора;

Peak Off-state Current Idrm [IDRM], A — те ж, але для тріністора;

Switching Voltage Vs [VS], У — напругу, при якому діністор переключається у відкритий стан;

Forward Breakover Voltage Vdrm [VDRM], У — те ж, але для тріністора при нульовій напрузі на керуючому електроді; Peak On-State Voltage Vtm [VTM], У — спадання напруги у відкритому стані; Foward Current at wich Vtm is measured Itm [ITM], A — струм у відкритому стані;

Turn-off time Tg [TG], з — час переключення в закритий стан; Holding current Ih [IH], A — мінімальний струм у відкритому стані (якщо він мень-ші встановленого, то прилад переходить у закритий стан);

Critical rate of f-state Voltage rise dv/dt [DV/DT], У/мкс — припустима швидкість зміни напруги на аноді тринйетора, при якому він продовжує залишатися в закритому стані (при більшій швидкості тріністор відкривається); Zero-bias junction capacitance Cj [CJO], Ф — бар'єрна ємність діністора при нульовій напрузі на переході;

Gate Trigger Voltage Vgt [VGT], У — напругу на керуючому електроді відкритого тринйетора;

Gate Trigger current Igt [IGT], A — струм керуючого електрода; Voltage at which Igt is measured Vd [VD], У — напругу, що відмикає, на керуючому електроді.

Перераховані параметри можна задати за допомогою діалогових вікон, аналогічних приведеному на мал. 3.53 для тринйетора.

Дослідження прямої гілки ВАХ тринйетора можна проводити з використанням схеми (мал.3.54), на якій показані джерела вхідної напруги Ui.


Мал.3.53. Діалогове вікно установки параметрів тріністора.

Мал.3.53. Схема для дослідження тріністорів.

3.7 Цифрові мікросхеми

Напівпровідникова електроніка бере свій початок у 1948 р., коли групою розробників фірми Bell був створений перший транзистор. Через 11 років інженерами фірми Texas Instruments була розроблена перша мікросхема, що складалася усього із шести транзисторів, а в 1971 р. нині всесвітньо відома фірма Intel розробила перший 4-розрядний мікропроцесор 4004, що містив більш 2000 транзисторів. Надалі мікромініатюризація електронних компонентів досягла таких темпів, що це послужило приводом для досить образного порівняння в журналі Sientific American (1982 р.): "Якби авіапромисловість в останні 25 років розвивалася настільки ж стрімко, як і промисловість засобів обчислювальної техніки, то зараз літак "Боїнг-767" коштував би 500 доларів і робив обліт земної кулі за 20 хвилин, затрачаючи при цьому 5 галонів палива". Разючі результати, досягнуті в мікроелектроніці, стали можливі завдяки не тільки новітнім напівпровідниковим технологіям, але і величезному багажеві схемотехнічних рішень, накопиченому протягом десятиліть багатомільйонною армією розроблювачів. Незважаючи на вражаючу уяву кількості транзисторів, зібраних на малюсіньких напівпровідникових кристалах, варто все-таки пам'ятати, що вони являють собою набори з найпростіших елементів, до розгляду яких ми і перейдемо.

У залежності від технології виготовлення інтегральні мікросхеми (ІМС) підрозділяються на серії (сімейства), що розрізняються фізичними параметрами базових елементів і їхнім функціональним призначенням. Найбільше поширення одержали ІМС, виготовлені по ТТЛ- і КМДН-технологіям. (ТТЛ — транзисторно-транзисторна логіка з використанням біполярних транзисторів, КМДН — з використанням комплементарних МДН-транзисторів).

Першої була випущена ТТЛ-серія SN74/SN54 (74 — комерційна, 54 — для військових застосувань). Вітчизняним аналогом серії SN74 стала популярна у свій час серія 155. У 1967 р. додатково розроблені сімейства SN74H/54H (High speed — швидкодіюча, вітчизняні аналоги — серії 131 і 130) і SN74L/54L (Low power — малопотужна, аналоги — серії 158 і 136).

У 1969 р. розроблена серія SN74S/54S (серії 531 і 530), у 1971 р. — серія SN74LS/54LS (серії 555 і 533), у 1979 р. — серія SN74F/54F фірми Fairchild (FAST — Fairchilds Advanced Schottky TTL, серія 1531), у 1980 р. — серія SN74ALS/54ALS (серія 1533), у 1982 р. — серія SN74AS/54AS (у позначеннях серій S — Schottky, LS — Low power Schottky, ALS — Advanced Low power Schottky, AS — Advanced Schottky, Advanced — удосконалена). Використання діодів з бар'єром Шоткі дозволило значно підвищити швидкодію ІМС за рахунок запобігання глибокого насичення транзисторів у ключовому режимі. Приємною для розроблювача особливістю всіх перерахованих серій є повне співпадання номерів висновків і позначення типу для ІМС однакового функціонального призначення. Наприклад, якщо SN7472 — JK-тригер, то позначення 72 буде присутнє для нього у всіх серіях. Цей же принцип використовується й у вітчизняних ІМС, хоча тип тут позначається буквами. Помітимо, що в EWB 5.0 для всіх цифрових IC уведена нумерація висновків, що істотно полегшує задачу визначення їхнього функціонального призначення при зіставленні з вітчизняними аналогами.