Смекни!
smekni.com

Метод вейвлет-перетворення (стр. 3 из 9)

- відбувається порогова обробка вихідного масиву відліку та занулення тих відліків, у яких величина менша порога, тобто порогових відліків Аі:

Аі, якщо Аі>P

Аі' =

0, якщо Аі<=P

Дана обробка дозволяє впустити лише ті фрагменти, які містять систолічний/діастолічний піки пульсової хвилі, а виключає невірні та випадкові викидає;

- відбувається пошук найближчого від початку буфера фрагмента A1 = {A1', де i=m...n} для якого А1'<>0 та у даному фрагменту визначається координата Хмах за величиною відліку А'(x) = max [A']. Якщо існує декілька розташованих поряд та рівних за величиною екстремальних відліків, тобто є у наявності горизонтальна "поличка" хвилі, відбувається обчислення ширини полички d та корекції координати Х на половину ширини полички Х1 = Х + d/2;

- координата Х1 записується як координата першої хвилі пульсу;

- відбувається обнуління знайденого фрагмента А1, тобто А1'=0 для всіх i=m...n;

- відбувається повторний пошук найближчого від початку буфера нульового фрагмента А11 = {Ai', i=k...1}, причому використовується одна й та ж підпрограма пошуку, що й у попередньому випадку;

-у фрагменту А11, як і раніше, визначається координата Х11максимального за величиною відліку з урахуванням можливої наявності горизонтальної полички. Координата Х11 запам'ятовується як координата наступної пульсової хвилі;

- вираховується період Т пульсової хвилі шляхом визначення різниці Х11-Х1 та множення його на тривалість одного такту роботи АЦП.

T = (X11 - X1) Xt;

- оскільки тривалість такту t вимірюється в одиницях мілісекунд, то миттєва частота ударів пульсу за хвилину F визначається як

F = 60 000 / T

Оскільки результат обчислень F представлений у загальному двійковому форматі, відбувається його перетворення у двійково-десяткову форму, зручну для людського сприйняття, та вивід результату обчислень на дисплей, тобто запис кодів Семи-сегментних індикаторів у буферний ЗП контролера клавіатури та дисплея.

Але під час виконання роботи був знайдений більш ефективний метод для аналізу пульсової хвилі – вейвлет-аналіз, якому і присвячений наступний розділ.


3. СУТНІСТЬ ВЕЙВЛЕТ-АНАЛІЗУ

Вейвлет-перетвореня сигналів є узагальненням спектрального аналізу, типовий представник якого - класичне перетворення Фур'є. Застосовувані для цієї мети базиси названі вейвлетами. Термін “вейвлет” пішов від англійського wavelet, що на українську мову переводиться як “коротка хвиля''. У математичній літературі поняття “вейвлет” позначають іноді словом “сплеск”, що звужує саме поняття, тим більше, що вейвлети й призначені для аналізу сплесків - сигналів нестаціонарного характеру.

Введені порівняно недавно, в 80-х роках, вони в наступні роки одержали швидкий теоретичний розвиток і широке застосування в різних областях обробки сигналів і зображень. На відміну від традиційного перетворення Фур'є, вейвлет-перетворення забезпечує двовимірне подання досліджуваного сигналу в частотній області в площині частота-положення. Аналогом частоти при цьому є масштаб аргументу базисної функції (найчастіше часу), а положення характеризується її зрушенням. Це дозволяє розділити великі й дрібні деталі сигналів, одночасно локалізуючи їх на тимчасовій шкалі. Іншими словами вейвлет-аналіз можна охарактеризувати як локалізований спектральний аналіз або - спектральний аналіз локальних збурювань. Апаратурним аналогом одного з видів вейвлет-аналіза є багато канальна смугова фільтрація сигналу при постійному відношенні ширини смуги фільтра до центральної частоти.

Вейвлет-аналіз розроблений для рішення завдань, які виявилися занадто складними для традиційного аналізу Фур'є. Перетворення Фур'є представляє сигнал, заданий у тимчасовій області, у вигляді розкладання по ортогональних базисних функціях (синусам і косинусам) з виділенням частотних компонентів. Недолік перетворення Фур'є полягає в тому, що частотні компоненти не можуть бути локалізовані в часі, його застосовують тільки в аналізі стаціонарних сигналів, у той час як багато сигналів мають складні частотно-часові характеристики. Як правило, такі сигнали складаються із близьких за часом, коротких високочастотних компонентів і довгих, близьких по частоті низькочастотних компонентів. Для аналізу таких сигналів необхідний метод, здатний забезпечити одночасний дозвіл як по частоті, так і за часом. Перше необхідно для локалізації низькочастотних складових, друге - для виділення компонентів високої частоти. Існує два підходи до аналізу нестаціонарних сигналів такого типу. Перший заснований на локальному перетворенні Фур'є. Прямуючи цим шляхом, нестаціонарний сигнал зводиться до стаціонарного шляхом його попереднього розбиття на сегменти (фрейми), статистика яких не змінюється з часом. Другий підхід полягає у використанні вейвлет-перетворення.

Всім відомо, що будь-який сигнал можна розкласти в суму гармонік (синусоїд) різної частоти. Але синусоїдальні хвилі нескінченні, і не дуже добре відслідковують зміни сигналу в часі. Щоб вловити ці зміни, замість нескінченних хвиль можна взяти зовсім однакові, але розподілені за часом короткі "сплески". Однак, як виявилося, цього недостатньо, треба додати ще їхні стислі копії. От тепер сигнал можна розкласти на суму таких сплесків різного розміру й місця розташування. Коефіцієнти розкладу, які несуть інформацію про еволюції сигналу, залежать від вибору початкового сплеску. Для кожного прикладного завдання можна підібрати найбільш пристосований (саме для неї) сплеск, що і називається вейвлетом. Математична сторона вейвлет-аналіза – річ досить тонка, хоча й достатньо наочна[11].

4. АНАЛІЗ ВЕЙВЛЕТ-ПЕРТВОРЕННЯ. ПОРІВНЯННЯ З ФУРЄ-АНАЛІЗОМ

Протягом багатьох десятиліть і по теперішній час основним засобом аналізу реальних фізичних процесів був гармонійний аналіз. Математичною основою аналізу є перетворення Фур'є. Перетворення Фур'є розкладає довільний процес на елементарні гармонійні коливання з різними частотами, а всі необхідні властивості й формули виражаються за допомогою однієї базисної функції exp(jwt) або двох дійсних функцій sin(wt) і cos(wt). Гармонійні коливання мають широке розповсюдження в природі, і тому зміст перетворення Фур'є інтуїтивно зрозумілий незалежно від математичної аналітики.

Перетворення Фур'є володіє рядом чудових властивостей. Оператор зворотного перетворення Фур'є збігається з вираженням для комплексно - сполученого оператора. Областю визначення перетворення є простір L2 інтегрувальних із квадратом функцій, і багато реальних фізичних процесів, спостережувані в природі, можна вважати функціями часу, що належать цьому простору. Для застосування перетворення розроблені ефективні обчислювальні процедури типу швидкого перетворення Фур'є (ШПФ). Ці процедури входять до складу всіх пакетів прикладних математичних програм і реалізовані апаратно в різних процесорах обробки сигналів.

Вейвлетне перетворення має багато спільного з перетворенням Фур'є. У той же час є ряд досить істотних відмінностей.Як приклад розглянемо застосування вейвлет-аналіза до синусоїд f(t)=sin(2πt/T1)+α sin(2πt/T2) , що дозволяє легко порівняти з результатами звичайного перетворення Фур'є.

На рисунку 4.1 показаний сигнал у вигляді суми синусоїд, що відрізняються частотами: (y=sin(30*x)+sin(100*x)).


Рисунок 4.1 - Сума синусоїд , що відрізняються частотами

Вейвлет-перетворення такого сигналу виявляє періодичну структуру не гірше й не краще перетворення Фур'є. На рисунку 4.2 видні дві широких смуги, що відповідають двом різним частотам.

Рисунок 4.2 - Вейвлет перетворення суми синусоїд з різними частотами

Однак відмінність цих двох спектральних аналізів проявляється, коли сигнал являє собою дві послідовні синусоїди з різними частотами ( рисунок 4.3).


Рисунок 4.3 - Дві послідовні в часі синусоїди з різними частотами

Як видно з рисунку 4.3 вейвлет-перетворення в цьому випадку дозволяє простежити еволюцію частоти сигналу в часі, тоді як Фур'є-спектр (рисунок 4.5) в обох випадках дасть нам тільки два піки й ніяк не відіб'є сам момент зміни частоти сигналу[12].

Рисунок 4.4 - Вейвлет-перетворення двох послідовних у часі синусоїд з різними частотами

Рисунок 4.5 - Спектр Фур'є двох послідовних у часі синусоїд з різними частотами

4.1 Перетворення Фур'є (ПФ)

В основі спектрального аналізу сигналів лежить інтегральне перетворення й ряди Фур'є. Нагадаємо деякі математичні визначення.

У просторі функцій, заданих на кінцевому інтервалі (0,T), норма, як найбільш загальна числова характеристика довільної функції s(t), по визначенню обчислюється як корінь квадратний зі скалярного добутку функції. У загальному випадку, для комплексних функцій, квадрат норми (енергія сигналу) відповідає виразу:

||s(t)||2 = ás(t), s(t)ñ =

s(t)·s*(t) dt, (4.1.1)

де s*(t) – функція, комплексно сполучена з s(t).

Якщо норма функції має кінцеве значення (інтеграл сходиться), то говорять, що функція належить простору функцій L2[R],R=[0,T], інтегрувальних із квадратом (простір Гильберта), і, відповідно, має кінцеву енергію. У просторі Гильберта на основі сукупності ортогональних функцій з нульовим скалярним добутком