Смекни!
smekni.com

Метод вейвлет-перетворення (стр. 5 из 9)

Для забезпечення роботи віконної функції по всьому інтервалі сигналу задавалися початкові й кінцеві умови обчислень (продовження на M крапок обох кінців сигналу нульовими значеннями).

Як видно за результатами обчислень, віконне перетворення дозволяє досить точно локалізувати інформативні особливості сигналу за часом і по частоті[13].

Використання дискретного вейвлет-перетворення дозволяє провести доведення багатьох положень теорії вейвлетів, пов'язаних з повнотою й ортогональністю базису, збіжністю рядів і т.д. Доказовість цих положень необхідна, наприклад, при стиску інформації або в завданнях чисельного моделювання, тобто у випадках, коли важливо провести розклад з мінімальним числом незалежних коефіцієнтів вейвлет-перетворення й мати точну формулу зворотного перетворення. Використання безперервного вейвлет-перетворення для аналізу сигналів більш зручно, а його деяка надмірність, пов'язана з безперервною зміною масштабного коефіцієнта а й параметра зрушення b, стає тут позитивною якістю, тому що дозволяє більш повно й чітко представити й проаналізувати інформацію, що міститься у вихідних даних. Зокрема, стає можливим проведення локалізації й класифікації особливих крапок і обчислення різних фрактальних характеристик сигналу, а також виконання частотно-часового аналізу нестаціонарних сигналів. Наприклад, у таких сигналів, як мовний сигнал, спектр радикально міняється в часі, а характер цих змін являє собою дуже важливу інформацію при розпізнаванні мови.

На основі вейвлетів створюються й такі елементи, як високочастотний і низькочастотний вейвлет-фільтри, за допомогою яких відбувається фільтрація сигналу по алгоритму Малла (рисунок 4.6). При цьому для збільшення дозволу вейвлет-фільтрів по частоті використається простий і досить ефективний прийом. Опишемо його для ортогонального випадку[2].


Рисунок 4.6 – Розклад по вейвлет-пакетам.

Сімейства вейвлетів у тимчасовій або частотній області використаються для представлення сигналів і функцій у вигляді суперпозицій вейвлетів на різних масштабних рівнях декомпозиції (розкладання) сигналів. Перші теоретичні роботи з основ вейвлетних перетворень були виконані в 90-х роках минулого століття Мейером (MayerY.), Добеши (DaubechiesI.) і Маллатом (MallatS.A.). Математичний апарат вейвлет-перетворення перебуває в стадії активної розробки, однак спеціальні пакети розширень по вейвлетам уже існують в основних системах комп'ютерної математики (Matlab, Mathematica, Mathcad, і ін.).

У цей час вейвлет-перетворення й вейвлетний аналіз використовуються в багатьох галузях науки й техніки для всяких завдань: для розпізнавання образів, для чисельного моделювання динаміки складних нелінійних процесів, для аналізу апаратної інформації й зображень у медицині, космічній техніці, астрономії, геофізиці, для ефективного стиску сигналів і передачі інформації з каналів з обмеженою пропускною здатністю й т.д.

4.5 Розклад по піддіапазонам

Іноді буває корисно розкласти сигнал на компоненти, енергія яких зосереджена в різних частотних піддіпазонах (тобто істотно відмінна від нуля на різних під відрізках відрізка

), і кодувати їх з різним ступенем детальності (наприклад, залежно від чутливості людського вуха до звуків різної частоти). Розподіл «енергії» сигналу по частотах характеризує
, Задовго до створення вейвлет-аналіза для цього використалася схема, що ми зараз опишемо.

Ми хочемо знайти два фільтри,

(придушуючий високі частоти) і
( придушуючий низькі частоти), які дозволяли б розкласти сигнал на два компоненти,
і
, удвічі їх прорідити (половина значень стає зайвою – адже частотний діапазон скоротився вдвічі!), а потім, за допомогою транспонованих фільтрів, точно відновитиза цими даними вихідний сигнал (цю операцію можна застосовувати рекурсивно). Умови на шукані фільтри зручно записати в термінах z-перетворення.

Нехай

– z-перетворення однієї з компонентів. Перед кодуванням вона проріджується вдвічі, а перед відновленням вихідного сигналу доводить до вихідної довжини вставкою нулів між сусідніми значеннями. При цьому z-перетворення з
перетворюється в
. Підставивши дане рівняння для кожного з фільтрів, одержимо z-перетворення компонентів перед відновленням

(4.5.10)

z-перетворення транспонованих фільтрів мають вигляд

і
. Сигнал відновиться з їхньою допомогою точно, якщо:

.

Одержуємо умови точного відновлення :

(4.5.11)

У матричній формі вони записуються так:

,

де

(4.5.12)

Підставивши

, одержимо умови на ДПФ шуканих фільтрів:

(4.5.13)

Допустимо, що ми знайшли

такий, що

(4.5.14)

Тоді, підставивши

(4.5.15)

ми бачимо, що умова виконується. Завдання звелося до знаходження тригонометричного багаточлена

, що задовольняє умові. На методах побудови таких багаточленів ми зупинимося в наступній лекції. Фільтри
і
, що задовольняють умові, називаються квадратурними дзеркальними фільтрами. На рисунку 4.7 (a) і (б), показані ДПФ такої пари фільтрів
і
, а також вихідний сигнал до й після фільтрації (без проріджування)[12].

Рисунок 4.7(а) – Сигнал до фільтрації

Рисунок 4.7 (б) – Сигнал після фільтрації


5. ЗАСТОСУВАННЯ ВЕЙВЛЕТ-АНАЛІЗА ДЛЯ ОБРОБКИ СИГНАЛІВ

5.1 Огляд існуючих методів

5.1.1 Пірамідне представлення сигналів

На рисунку 5.1 схематично зображене пірамідне представлення одномірного сигналу. Сигналові ставляться у відповідність дві піраміди: піраміда гауссіанів (ПГ) і піраміда лапласіанів (ПЛ). Ці назви відбивають аналогію з популярними в графіку операціями згладжування (згортки з колоколообразним фільтром) і виділення перепадів (обчислення “дискретного оператора Лапласа”). Можна вважати цю конструкцію спрощеним варіантом попередньої.

В основі ПГзнаходиться вихідний сигнал. Наступний поверх ПГ – вихідний сигнал, профільтрований низькочастотним фільтром

і проріджений після цього вдвічі – передбачається, що фільтр h «убиває» верхню половину частотного діапазону, тому густоту вибірки можна відповідно зменшити. До цього поверху застосовується та ж операція, і так далі. У випадку кінцевих сигналів кожний наступний поверх удвічі коротше попереднього.

Рисунок 5.1 – Пірамідне представлення сигналів

Поверхи ПЛ – різниці між послідовними поверхами ПГ. Вони обчислюються так. Нехай, наприклад,

і
– перший і другий поверхи ПГ,
– перший поверх ПЛ, що ми хочемо обчислити. Для цього спочатку вирівнюються довжини поверхів: