Смекни!
smekni.com

Дистанционный комплекс контроля функционального состояния (стр. 2 из 15)

Динамическое многоканальное радиотепловидение (ДМРТ). Исследование пространственного распределения реакций коры головного мозга на внешние стимулы позволит получить новую информации: о механизмах его функционирования. Для исследования динамики этих процессов в коре головного мозга человека пригодно ограниченное число методов, поскольку необходимо избегать применения инвазивных методов исследования, а также методов, использующих радиоактивные излучения или сильные магнитные поля. При исследованиях на животных весьма успешным оказалось применение термоэнцефалоскопни [3] — измерение температуры коры по ее собственному тепловому излучению с помощью динамического инфракрасного тепловидения. Было обнаружено, что в ответ на внешний сенсорный стимул в коре головного мозга возникают разнообразные очаги повышенной температуры, как точечные, так и распределенные, в том числе волновые режимы. Характерное, время соответствующих реакций — единицы и десятки секунд. Данный метод неинвазивен и, более того, бесконтактен, что является его несомненным достоинством. К сожалению, этот метод даже при исследованиях па животных требует снятия скальпа, что исключает его использование для изучения температурных реакций человека.

К настоящему времени развит другой метод неинвазивного измерения температуры тканей — динамическое многоканальное радиотепловидение (ДМРТ), основанный на регистрации собственного теплового излучения тканей не в инфракрасном, а в микроволновом диапазоне частот [4]. Это позволяет измерять излучение, выходящее с глубины до нескольких сантиметров, интенсивность которого, определяется абсолютной температурой в указанном слое ткани. Съем информации осуществляется посредством контактных антенн, установленных на поверхности тела. В силу конструктивных особенностей метод ориентирован на измерение не абсолютной температуры, а динамики ее изменения по всей исследуемой области. Данный метод применялся для исследований в онкологии [5]. С его помощью было показано, что при глюкозном тесте происходит значительный разогрев в области, где расположена опухоль или ее метастазы. Первые исследования подтвердили, что этот метод окажется эффективным для изучения реакций коры головного мозга человека.

Реокардиомониторные системы. На сегодняшний день наибольшее распространение среди систем удаленного мониторинга в кардиологии получили носимые ЭКГ-мониторы. В то же время отмечается абсолютное отсутствие аппаратуры для дистанционного анализа импедансных реограмм, что объясняется, с одной стороны, технической сложностью импедансных измерительных преобразователей и сравнительно недавним внедрением доступных средств автоматизации диагностических процедур, а с другой - проблемами методического и алгоритмического характера, особенно проявляющимися в условиях естественной подвижности и изменяющегося положения тела пациента.

Учитывая сложившиеся обстоятельства на рынке телемониторных систем диагностики, а также близость областей применения систем дистанционного анализа ЭКГ и реографии, рассмотрим основные типы существующих ЭКГ-мониторов.

Широкое использование электрокардиографии в медицинской практике и разнообразие условий, в которых может потребоваться кардиологическая помощь, создали базу для развития различных технологий дистанционного анализа ЭКГ. Классификация последних представлена в таблице 1.1.

Таблица.1.1 - Классификация методов дистанционного анализа ЭКГ

Классификационный признак Известные варианты реализации
1 2
Среда передачи Радиоканал с малым радиусом действия Радиоканал с большим радиусом действия

Телефонные линии общего пользования

Выделенные проводные линии
Методы передачи АналоговыеЦифровые
Число одновременно передаваемых сигналов ОдноканальныеМногоканальные
Характер приемного оборудования

Специальное оборудование приемного

Стандартные устройства общего оборудования назначения (факс, твейджер)

В настоящее время наибольшее распространение получили системы передачи ЭКГ по телефону, что обусловлено повсеместной доступностью и относительной дешевизной проводной телефонной связи.

Радиоканальные системы используются реже, однако их достоинство неоспоримо, когда необходимо обеспечить естественную мобильность передающей стороны при длительном мониторировании в реальном времени активно перемещающихся пациентов (системы с малым радиусом действия) или при поддержке мобильных бригад скорой помощи (системы с большим радиусом действия).

Система дистанционного мониторинга параметров центральной гемодинамики согласно рисунку 1.1 включает в себя носимый пациентом 1 портативный реокардиомонитор с приемопередатчиком 2, осуществляющий измерение и передачу реограмм и электрокардиограмм с единой электродной системы, а также центральный монитор 3 и базовую станцию 4, обеспечивающие прием, обработку и визуализацию полученных данных в реальном масштабе времени. Разработанный радиотелсметрический протокол с временным разделением каналов позволяет мониторировать одновременно до четырех пациентов.

Рисунок 1.1 - Биорадиотелеметрическая реокардиомониторная система

В канале импедансного измерительного преобразователя применена новая технология формирования трехуровневых зондирующих токов и стробируемого синхронного детектирования. Синтез трехуровнего зондирующего тока, управление синхронным детектированием и аналого-цифровым преобразованием, формирование радиотелеметрического протокола осуществляет микроконтроллер AT90S1200. Основные достоинства, определившие выбор данного микроконтроллера, - возможность работы от напряжения 3В с целью снижения потребляемого модулем тока, высокая производительность (при тактовой частоте 7,4 МГц время выполнения одной команды от 135 нс), развитая система команд, а также доступные и удобные средства проектирования и отладки [4].

Технически новым решением для разработанного реокардиомонитора является нормирующий фильтр-усилитель на выходе синхронного детектора представленный на рисунке 1.2, который позволяет использовать один канал для полного реографического сигнала, не разделяя его на базовый импеданс и пульсовую составляющую реограммы, тем самым сокращены аппаратные затраты и количество передаваемых каналов. Кроме того, повышение частоты среза аналоговых фильтров верхних частот до 1,8 Гц с последующей программной коррекцией линейных частотных искажений сигналов дает возможность применения удовлетворяющих требованиям компактности конденсаторов с меньшими размерами.

Рисунок 1.2 - Нормирующий фильтр-усилитель

Система аналого-цифрового сбора данных реализована на четырехканальном 16-разрядном АЦП последовательных приближений AD974, имеющем встроенный источник опорного напряжения, входной мультиплексор, устройство выборки-хранения и последовательный цифровой интерфейс. Данная микросхема может функционировать от одного источника питания 5В и имеет режим пониженного потребления.

Использование 16-разрядного АЦП позволяет увеличить допустимый размах входных, сигналов в 16 раз по сравнению с ранее применяемым 12-разрядным АЦП, что значительно снижает вероятность искажения реограммы свободно перемещающегося пациента в силу ограниченного динамического диапазона АЦП.

Достоинства: исключение «привязки» обследуемого к диагностической аппаратуре обеспечивает естественную подвижность пациента при выполнении им функциональных проб, тестовых профессиональных операций и других диагностических, профилактических и лечебных мероприятий, улучшает качество жизни пациентов, и в то же время позволяет врачу оперативно получать объективную картину состояния сердечно-сосудистой системы, применение для обработки полученной информации компьютера, высокая скорость передачи данных, возможность одновременного мониторинга нескольких пациентов.

Недостатки: ограниченный ресурс автономного источника питания, аналоговые фильтры инфранизких частот содержат крупногабаритные компоненты, что не удовлетворяет требованиям портативности, в условиях, естественной подвижности пациента существует вероятность искажения диагностических реограм.

1.2 Приборы для дистанционной регистрации биосигналов

Устройство регистрация артериального пульса и частоты дыхания. Логический блок анализа сигналов, выполненный на базе ЭВМ с высокой степенью точности и надежности, автоматически обрабатывает квадратурные составляющие, выделяя фазу отраженного сигнала и раздельно регистрируя параметры процесса дыхания и пульса. На рисунке 1.3 представлена блок-схема устройства для доплеровской локации.

Наблюдение за артериальным пульсом и процессом дыхания для исследования психофизического состояния осуществляется следующим образом. Деятельность сердечнососудистой системы и дыхание оказывают комбинированное воздействие на кожный покров, проявляющееся в виде колебательных микроперемещений кожи. Для получения информации о параметрах процесса дыхания и пульса определяют микроперемещения кожного покрова путем его облучения с использованием доплеровского локатора электромагнитной волной сверхвысокой частоты в диапазоне от 10 до 100 ГГц. При этом выделяют изменение фазы

отраженного сигнала (которое линейно связано с изменением расстояния до облучаемого объекта), путем его разложения на квадратурные составляющие sin
и cos
, корректировки (фильтрации путем вычитания низкочастотного тренда) и преобразования синусной (
и косинусной
) квадратурных составляющих сигнала в аргумент его фазы
вычисляемый в блоке выделения фазы как арктангенс отношения квадратурных составляющих сигнала в аргумент его фазы., вычисляемый в блоке выделения фазы как артктангенс отношения квадратурных составляющих
. Затем из полученного непрерывного сигнала, характеризующего изменение фазы
за счет перемещения отражающего объекта (т.е. облучаемого участка кожи), выделяют составляющие процессов дыхания и пульса, регистрируют параметры процесса дыхания (в виде кривой дыхательной экскурсии) и пульса (в виде кардиоинтервалов) и по ним оценивают психо-физиологическое состояние исследуемого объекта, используя известные в медицине методики.