Смекни!
smekni.com

Теоретичні основи генно-модифікованих продуктів (стр. 13 из 14)

У генно-інженерних лабораторіях США та Франції одержано результати про успішне використання вбитої вакцини для захисту мавп від збудника СНІДу людини, а також про властивості рекомбінантних антигенів ВІЛ індукувати відповідь з захисною активністю, спрямованою на різні варіанти вірусу. Останнє стало поштовхом до активізації роботи по конструюванню живої вакцини проти СНІДу на базі рекомбінантного вірусу вісповакцини. Суть роботи полягає в тому, що у гені вірусу вісповакцини (який є вектором), використовуючи рестріктази та лігази, вбудовують фрагмент геному збудника СНІДу, ту її ділянку або гени, які відповідальні за синтез зумовлених білків ВІЛ, передусім оболонкових глікопротеїдів. У результаті одержують такий гібрид вірусу, що проникає в клітини та, розмножуючись у них, крім власних білків вірусу вісповакцини, спричинює синтез глікопротеїдів ВІЛ. В організмах, у які введено зазначений вірус на синтезуючі білки (в тому числі і на білки вірусу СНІД), індукується утворення нейтралізуючих антитіл.

Перші випробування такої рекомбінантної вакцини, створеної Загурі, професором Паризького університету ім. подружжя Кюрі, були проведені на ньому та десяти добровольцях із Заїру, в сироватках крові яких були відсутні антитіла до ВІЛу. Наступні спостереження показали, що у сироватці крові вакцинованих з'являються антитіла, які нейтралізують в системі іn vitro вірус СНІДу того ж субтипу, який використовували для одержання вакцини, але не інший генетичний варіант збудника хвороби.

Вакцинація зумовила стимуляцію відповіді клітини -мітоз лімфоцитів та експресію Т-клітинних рецепторів для інтерлейкіну-2. Одержані результати дають підставу сподіватися, що вакцина як профілактичний засіб допоможе у боротьбі з цією страшною хворобою.

Методи генетичної інженерії широко використовують у боротьбі з вірусними захворюваннями тварин і птиці, що яскраво підтверджує приклад виведення птиці, стійкої проти лейкозу. Із вірусних захворювань птиці лейкоз найбільш розповсюджений. До нього сприйнятливі всі види сільськогосподарської птиці, але найбільше — кури. Зазначене захворювання реєструється у всіх країнах з розвиненим птахівництвом, що пов'язано в основному з шляхами передавання збудника (вірус із родини ретровірусів). Він передається не тільки контактним шляхом, а й через яйця. Зважаючи на це, ветеринарно-санітарні заходи по боротьбі з інфекцією відіграють не вирішальну, а лише допоміжну роль.

Лікування від хвороби не розроблено. У більшості країн кращим методом боротьби з інфекцією є створення стійких проти хвороби ліній птиці. Але в результаті традиційної селекції одержати птицю, повністю стійку проти зараження і не здатну передавати збудник нащадкам, не вдається.

Вчені регіональної птахівничої лабораторії в Іст Лансінгу (штат Мічіган, США), підійшли до вирішення цієї проблеми на біоінженерному рівні.

Принцип цього підходу грунтується на природному механізмі дії вірусів, що викликають лейкоз. Тільки замість патогенного вчені використали дефектний (генетичнозміненийвірус),якийздатний розмножуватися, але його ДНК (гени), поєднуючись з ДНК клітин зародка, передаються нащадкам і блокують клітину (займають місце) від проникнення і розмноження патогенного вірусу. Дефектний вірус сконструювали шляхом поєднання відповідних генів ретровірусів.

Методика цієї роботи така (Кононенко, 1988). Дефектний вірус ввели в жовтки добових яєць, що інкубували, за допомогою голки. Отвір на місці проколу в шкаралупі заклеювали. Використовували яйця, що не заражені вірусом. У виведеної із цих яєць птиці досліджували клітини крові на наявність генів введеного вірусу. Півнів, що мали ці гени, парували з курками, вільними від вірусу, а клітини крові їх нащадків також досліджували. Так було одержано три покоління птиці, які стабільно зберігали гени дефектного вірусу і були стійкі проти лейкозу.

Нині стоїть завдання використовувати віруси як перенощики генів не тільки для створення стійкої до захворювання птиці, а й для підвищення її яєчної і м'ясної продуктивності з меншими затратами кормів і поліпшенням смакових якостей цієї продукції.


4. ПРОБЛЕМИ ВИКОРИСТАННЯ ГЕНЕТИЧНО МОДИФІКОВАНОЇ СИРОВИНИ

Учені багатьох країн виражають серйозну стурбованість відносно гарантії безпеки використання генетично модифікованої харчової сировини й продуктів його переробки.

Багато вчених США вважають, що такого роду харчова сировина не повинне використатися для харчування людей і годівлі тварин продовольчого призначення. На етапах вирощування й переробки генетично модифіковане (ГМ) сировина не повинне змішуватися зі звичайною харчовою сировиною через можливий негативний вплив і небезпеку для здоров'я людини.

У цей час у відношенні ГМ сировини виникло багато питань внаслідок відсутності експериментально обґрунтованих відповідей і недостатньої вивченості наслідків його постійного й тривалого застосування для масового харчування. Поки немає науково обґрунтованих відповідей у відношенні його екологічної, біологічної, харчової, кормової й медичної безпеки з обліком можливих віддалених негативних ефектів для організмів різного рівня організації. Вони можуть проявлятися в різний термін залежно від видових особливостей, організмів, їхнього віку й фізіологічного стану, а також особливостей хімічного складу джерел харчування й середовища перебування.

Деякі дослідження свідчать про те, що зміст білка, незамінних амінокислот і вітамінів перебуває на однаковому рівні або навіть нижче в ГМ продукції в порівнянні зі звичайної.

Генна технологія дозволяє одержувати сорти плодів і овочів, що характеризуються більше високою стійкістю до микробіальних захворювань. Однак поки не з'ясовані причини такого роду змін і не встановлені речовини, що гнітять розвиток грибків, бактерій, вірусів. Немає відповідей і на питання, чому колорадський жук не може харчуватися ГМ картоплею, які антиживильні речовини представляють для нього небезпека і як вони можуть впливати на мікрофлору кишечнику й організм людини?

На думку ряду вчених, фахівців і практиків, широке поширення ГМ рослин може негативно відбитися на біологічній розмаїтості живого світу й привести до ще більшої зміни середовища перебування.

Пилок ГМ-рослин розноситься потоками атмосферного повітря, комахами й птахами в біосферний простір і попадає в екосистеми, що довгостроково формувалися в природних умовах, що може викликати непередбачені зміни й необоротні негативні процеси. У лабораторних умовах дослідники часто проводять схрещування, які зовсім не характерні для природного середовища перебування. Наприклад, для експериментів використають ген риби й томатів, людину й риб, медуз і мишей і ін.

На думку багатьох учених різних країн, необхідно враховувати не тільки що швидко проявляються, але й досить віддалені ефекти ГМ-продуктів харчування.

Відомі приклади результатів досліджень, проведених у ряді країн, свідчать про необхідність більше глибокого й тривалого вивчення ГМ-організмів.

Ученими виявлено, що синтез білка ГМ зміненими організмами може давати нові властивості, що характеризуються сильної аллергенністю. Наприклад, після введення в сою генів бразильського горіха з метою підвищення змісту в ній білка боби цієї культури стали викликати більше високу аллергенність у людини. У Японії був отриманий ГМ триптофан і використаний для лікування депресій. У результаті його споживання заболіло 5 тис. чоловік, і 1500 чоловік стали інвалідами.

Британський професор А.Пуштай назвав генетично модифіковані продукти «їжею зомбі». Ця назва дана через те, що в процесі підгодівлі ними пацюків виявлене зменшення обсягу мозку, руйнування печінки, деформація шлунка й гноблення імунітету.

Щодо доцільності харчування людей генетично зміненими продовольчими організмами поки немає переконливих експериментальних доказів, а також економічних і екологічних пророблень. Генна технологія, як і раніше застосовується «хімізація» продовольчих організмів, поки не має вагомих науково-практичних доказів високої корисності й гарантії нешкідливості для людства й середовища його перебування.

Небезпека генної інженерії деякі вчені, у тому числі лауреат Нобелівської премії 1995 р. Дж.Ротблат, зіставляють зі створенням нових видів зброї масової поразки. але більше доступних, чим ядерне. Як відомо, мікроорганізми, гриби, рослини й тварини мають різноманітні природні видові ознаки. За кожний властиві їм ознака відповідає певні ген, що являє собою відрізок молекули дезоксирибонуклеїнової кислоти (ДНК). Додавання гена іншого організму сприяє появі нової позитивної або негативної якості в генетично модифікованих живих істотах. Нові генетично змінені організми називають мутантами або трансгенними. До теперішнього часу вуж відомі небезпечні зміни, що відбуваються в результаті дослідницьких маніпуляцій з генами різних видів організмів. Наприклад, експерименти вчених Мичиганского університету показали, що створення стійких до вірусів рослин за допомогою генної інженерії викликає мутації й негативного характеру. Вони сприяють появі нових мутованих вірусів, які для рослин ще більш небезпечні й вирулентні. Не менш цікаві результати для практичних висновків отримані вченими штату Орегона США. Як виявився, генетично модифікований мікроорганізм (Klebsiella planticola) мав здатність швидко використати живильні речовини ґрунту. Аналогічні властивості здобували й деякі інші бактерії після генетичних змін (Rhizobium melitoli і ін.).

У різних країнах миру неоднозначно оцінюють генетично модифіковані мікроорганізми й харчова сировина рослинного й тваринного походження. Так, мораторій на ввіз ГМ харчової сировини й продуктів його переробки уведений в Австрії, Великобританії, Греції, Люксембурзі, Франції й деяких інших країнах. У ряді держав ЄС прийнятий закон про обов'язкове маркування харчової продукції, що містить більше 1 % трансгенних компонентів. Обов'язкове маркірування ГМ продукції уведене у Великобританії, Німеччині, Люксембурзі, Нідерландах, Норвегії, Франції, Швейцарії, Швеції. Тоді як в Австралії, Канаді, Новій Зеландії, США й деяких інших країнах генетично змінені продукти харчування маркірують тільки за бажанням виробника.