Смекни!
smekni.com

Фармакодинамика (стр. 2 из 5)

Фармакологические агенты связываются помимо рецепторов, с которыми обусловлено специфическое действие, еще со многими макромолекулами, например с белками плазмы, с белками клеток, с ферментами, осуществляющими биотрансформацию ксенобиотика. Подобные места связывания называются вторичными, или молчащими, рецепторами местами потери, или местами депонирования, или акцепторами лекарств.

В многоступенчатом механизме действия лекарств можно условно выделить: 1) фармакокинетику—всасывание, распределение, превращение и выделение; 2) взаимодействие вещества с рецептором и порождение им стимула; 3) процессы, определяющие отношение между вызванным импульсом и регистрируемым эффектом. Известно, что между силой импульса и величиной эффекта в одних случаях может существовать корреляционная зависимость до достижения максимальных величин, в других случаях эффект может возникать по принципу «все или ничего».

Современные рецепторные теории базируются на том, что все рецепторы равноценны, одинаково доступны и способны взаимодействовать с веществом, а эффект пропорционален числу занятых рецепторов. Согласно одной из простейших теорий, так называемой теории занятости, считается, что организм имеет фиксированное число, по-видимому, независимых эквивалентных рецепторов. По теории занятости, дифференцированный отклик пропорционален доле рецепторных полей, занятых молекулами препарата. Следовательно, максимальный эффект достигается, когда все рецепторы заняты; в таких случаях математически все явления можно описать кинетическим уравнением Михаэлиса—Ментен.

По теории занятости, вещества действуют все время, пока они Находятся на рецепториом участке. Согласно другой точке зрения, воздействие/ осуществляется только в момент связывания препарата с рецептором (за счет конформациониых изменений рецептора), как в случае появления импульсного потенциала действия, сопровождающего перенос нейромедиатора на рецепторе постсинастической мембраны. Эта модель лежит в основе теории скоростей взаимодействия лекарств с рецепторами. Уравнение теории скоростей описывает ту же самую функциональную связь между эффектом и дозой, что и уравнение Михаэлиса—Ментен.

В результате количественного анализа перечисленных теоретических предпосылок возникло представление, что эффект лекарства определяется не только способностью образовывать комплекс вещество — рецептор, обусловленной сродством или аффинитетом вещества к рецептору, но и возможностью активации последнего. Действенность самого процесса взаимодействия лекарства с рецептором принято обозначать как внутреннюю активность, или эффективность.

Аффинитет и внутренняя активность фармакологических средств являются выражением химической структуры веществ, их физико-хими-ческих свойств, но проявляются они только во взаимодействии с рецепторной структурой.

В результате развития рецепторной теории на основе изучения роли циклических нуклеотидов, в частности циклической АМФ, ГМФ и др., в последние появилось представление о вторичных передатчиках. Их роль можно проследить на примере увеличения адреналином фосфорилазной активности. Адреналин повышает фосфорилазную активность, стимулирует фермент аденилатциклазу, которая увеличивает синтез циклдаеской АМФ, а последняя активирует фосфорилазу. Доказано, что в действии многих медиаторов, гормонов и лекарственных веществ принимают участие циклические нуклеотиды.

Конечно, все многообразие действия лекарств не исчерпывается рецепторным взаимодействием. Существует множество других механизмов — химических, физических, биохимических, биофизических и др. Многие вещества непосредственно реагируют с токсинами: унитиол и ЭДТА с солями тяжелых металлов образуют стабильные комплексы и таким образом реактивируют жизненно важные ферменты, ионно-обменные смолы; антациды при приеме внутрь нейтрализуют кислоту в желудке; под воздействием аммония хлорида увеличивается количество ионов водорода и повышается содержание кислых продуктов в моче. Натриевые соли органических и угольной крови повышав щелочной резерв крови и повышают pН мочи·. Детергенты разрушают целостность липидной мембраны и нуклеопротсидные комплексы рибосом. Галоиды, окиси и перекиси в результате пёреки'он'огф окисления вызывают изменение структуры мембран. Денатурирующие вещества (фенолы, соли тяжелых металлов) нарушают целое π гость и функциональные свойства клеточных мембран, субклеточных структур и белков. Действие летучих наркотиков обусловлено их способностью растворяться в липоидах мембран нейронов и нарушать их функции кроме того, имеются данные , что инертные газы могут изменять «кристаллическое состояние воды» и тем самым оказывать наркотическое действие. Магния сульфат дает слабительный эффект; мочевина и маннитол — мочегонное действие, благодаря изменению осмотического давления, Регуляция осмотического давления лежит в основе действия кровезаменителей. Существенное значение в фармакодинамике имеет блокада даШчёвых ферментов (холинэстеразы, цитохромоксидазы), сложных биоэнергетических процессов, разобщение окислительного фосфорилирова-ния, транспорта ионов, нарушение синтетических процессов с использованием антиметаболитов.

Все вышеперечисленные количественные и качественные процессы входят в понятие первичной фармакологической реакции. Обычно она протекает скрыто и проявляется в виде клинически диагностируемых реакций организма или, как их принято называть, фармакологических эффектов, обусловленных физиологическими свойствами клеток, органон и систем. Например, ацетилхолии вызывает сокращение гладких мышц бронхов, пищеварительного аппарата, увеличивает секрецию слюнных желез. Однако в основе однотипных фармакологических эффектов могут быть разные первичные фармакологические реакции. Так, ангиотензин и норадреналин вызывают сокращение гладких мышц сосудов, но эффект ангиотензина обусловлен непосредственным влиянием на последние и повышением выброса норадреналина, торможением его обратного захвата и повышением чувствительности адренорецепторов, тогда как эффект норадреналина — взаимодействием его с альфа-адренорецепторами сосудистой стенки;

Обычно под воздействием лекарств (антикоагулянты, сосудорасширяющие вещества, анальгезирующие и др.) происходят биохимические и физиологические изменении, врезультате исчезают клинические симптомы, Однако для ''Количественной и сравнительной характеристики приходится прибегать к таким понятиям, как максимальный эффект, его вариабельность и избирательность. Важна характеристика эффекта во времени как при приеме однократной дозы, так и после повторных приемов препарата. Каждый эффект лекарства, как правило, по времени можно разделить на латентный период, время максимального лечебного эффекта и его продолжительность.

Каждый из этапов обусловлен рядом биологических процессов. Так, латентный период определяется в основном путем введения, скоростью всасывания и распределения вещества по органам и тканям, в меньшей степени — его скоростью биотрансформации и экскреции. Продолжительность эффекта обусловлена преимущественно скоростью инактивации и выделения. Определенное значение имеют перераспределение действующего агента между местами действия и депонирования, фармакологические реакции и развитие толерантности. В большинстве случаев с увеличением дозы лекарства уменьшается латентный период, увеличиваются эффект и его продолжительность. Удобно и практически важно выражать продолжительность лечебного действия полупериодом снижения эффекта. Если полупериод совпадает с концентрацией вещества в плазме, врач получает объективный критерий для контроля и направленной регуляции терапевтической активности. Другой критерий — полупериод нарастания концентрации и эффективности — можно использовать для характеристики процессов биодоступности, всасывания, распределения лекарства, между органами и тканями . Как уже отмечалось, эффективность лекарства зависит от его дозы. Большая корреляция определяется между концентрацией и 'эффектом. Однако на практике прямая зависимость между концентрацией вещества в сыворотке и величиной эффекта наблюдается очень редко в связи с многокаскадностью лежащих в основе взаимодействия лекарств' и организма процессов. Так, снижение или повышение артериального давления может быть результатом изменения сердечной деятельности, тонуса сосудов, объема циркулирующей крови и нервной регуляции, а также одновременных или последовательных их сочетаний. В связи с этим кривая может быть прямой, изогнутой вверх или вниз, сигмой-дального характера. Если все же вычленить какой-то один компонент, то кривая доза — эффект приобретает строго определенный характер с параметрами, отражающими силу, наклон и максимальную эффективность.

По расположению кривой доза — эффект относительно оси доз можно судить о силе действия лекарства, всех фармакокинетических показателях (всасывание, распределение, превращение и выделение), а также о сродстве лекарства с рецепторами. Для сравнения силы действия двух и более средств используют относительную силу их действия — определение эквиэффективных доз. Характер подъема в какой-то степени характеризует механизм действия вещества, а максимальный эффект — внутреннюю активность лекарства. Анализ кривых доза — эффект морфина и кислоты ацетилсалициловой убедительно показывает, что морфин имеет достаточную внутреннюю активность, чтобы снять сильную и слабую боль, в то время как кислота ацетилсалициловая даже в максимальных дозах может без проявления токсических свойств снять лишь болевой синдром средней тяжести.