Смекни!
smekni.com

The manager as a teacher: selected aspects of stimulation of scientsfsc thinking (стр. 14 из 20)

Self-organizing systems. Bogdanov has shown that there exist two modes of formation of systems. According to the first one the system arises at least from two objects of any nature by means of the third entity – connections (synthesis, generation). According to the second one the system is formed at the expense of disintegration (destruction, retrogression/degeneration) of the more complex system that previously existed [6]. Hence, the system may be constructed (arranged) from new elements or restructured (reorganized) at the expense of inclusion of additional elements in its structure or by exclusion from its structure of unnecessary elements. Apparently, there is also a third mode of reorganization of systems – replacement of old or worn out parts for the new ones (structural regeneration), and the fourth mode – changing of connections/bonds between internal elements of the system (functional regeneration). Generation (the first mode of reorganization) is a process of positive entropy (from simple to complex, complexification of systems). New system is formed for the account of expanding the structure of its elements. This process occurs for the account of emergence of additional connections between the elements and consequently requires energy and inflow of substances (new elements). The degeneration (the second mode of reorganization) is a process of negative entropy (from complex to simple, simplification of systems). New system is formed for the account of reduction of compositional structure of its elements. This process releases energy and elements from the structure. Both modes are used for the creation of new systems with the new goals. In the first case complexification of systems takes place, while in the second one their simplification or destruction occurs. Structural regeneration (the third mode of reorganization) is used for the conservation and restoration of the systems’ structure. It is used in the form of metabolism, but at that, the system and its goals remain unchanged. Energy and inflow of substances for the SFU restoration is required for this process. Functional regeneration (the fourth mode of reorganization) is used for the operation of systems as such. The principle of the systems’ functioning resembles generation and degeneration processes. In process of accretion of functions the systemincludes the next in turn SFU ostensibly building a new, more powerful system with larger number of elements (generation). During the reduction of capacity of functions the system deactivates thenext in turn SFU as if it means to build a new system with fewer number of elements (degeneration). But these are all reversible changes of the system arising in response to the external influence which are effected for the account of the change of the condition of its elements and the use of DPC, NF and effectors. At that, the system’s structure kind of alters depending on its goal. New active and passive (reserve) SFU appear in it. This process requires energy and flow of substances for energy recovery, but not necessarily requires a flow of substances for the restoration of SFU. How does the organization (structuring) of system occur? Who makes decision on the organization or reorganization of systems? Who builds control block of the new or reorganized system? Who gives the command, the task for the system? Why is the NF loop built for meeting the given specific condition? Before we try to answer these questions, we will note the following. First, there is a need in the presence of someone or something “interested” in the new quality of the result of action who (or which) will determine this condition (set the goal) and construct the control block. Someone or something “interested” may be the case coupled withnatural selection, whereby by way of extensive arbitrary search corresponding combinations of elements and their interactions may emerge that are the most sustained/lasting in the given conditions of environment. Thus, the environment/medium sets condition and the incident builds the systems under these conditions. At this point we do not consider the conditions in which generation ordegeneration occurs and which are associated with redundancy or lack of energy (with positive or negative entropy). We only consider the need and expediency of creation of systems. The more complicated the system is, the more search options should be available and the more time it takes (the law of large numbers). We will note, however, that the goal is set to any systems from the outside, whether it is an incident, a person,natural selection or something else. But we cannot ignore the following very interesting consequence. Firstly, the survival rate is the main and general goal of any living organism. And as far as the goal is set from the outside, the survival rate is also something set to us from the outside and is not something that stems from our internal inspirations. In other words, the aim to survive is our internal incentive, but someone or something from the outside has once imbedded it in us. And prior to such imbedding it was not “ours”. Secondly, in order to ensure the possibility of building systems with any kind of control block, even the elementary one, the presence of such elements is necessary which qualityof results of actionscould in principle provide such a possibility. It follows from the conservation law and the law of cause-and-effect limitations that nothing occurs by itself. These elements should have entry points of external influence (necessarily), command entry points (not necessarily for uncontrollable SFU) and exit points of the result of action (necessarily). Exits and entries should have possibility to interact between themselves. This possibility is realized by means of combination of homo-reactivity and hetero-reactivity of elements. Physical homo-reactivity is the ability of an element to produce the same kind of result of action as is the kind of external influence (pressure → pressure, electricity → electricity, etc.). At the same time, characteristics of physical parameters do not vary (10g →10g, 5mV → 5mV, etc.). Homo-reactive elements are transmitters of actions. Physical hetero-reactivity is the ability of an element, in response to external influence of one physical nature, to yield the result of action of other physical nature (pressure → electric pulse frequency, electric current → axis shaft rotation, etc.). Hetero-reactive elements are converters of actions. The elements with physical hetero-reactivity are, for example, all receptors of living organism (which transform the signals of measurable parameters into nerve pulse trains), sensors of measuring devices, levers, shafts, planes, etc. In other words such elements may be any material things of the world around us that satisfy hetero-reactivity condition. Chemical reactions also fall under the subcategory of physical reactions as chemical reactions represent transfer of electrons from one group of atoms to others. Chemistry is a special section of physics. Logic hetero-reactivity is the ability of an element, in response to external influence of one type physical nature, to yield the result of actionof the same physical nature (pressure → pressure, electric current → electric current, etc.), but with other characteristics (10g → 100g, 5mA → 0.5mA, 1Hz → 10Hz, 5 impulses → 15 impulses, etc.). Amplifiers, code converters, logic components of electronics are the examples of elements with logic hetero-reactivity. Neurons do not possess physical hetero-reactivity as they can perceive only potentials of action and generate the potentials. But they have logic hetero-reactivity and they can transform frequency and pulse count. They do not transform a physical parameter as such, but its characteristics. Any system consists of executive and operating elements. At the same time any control block of any system itself consists of some kind of parts (elements), so it also falls under the definition of systems. In other words, control block and its parts are specific systems (subsystems) themselves with their goals, and they have their own executive elements and local control blocks operating these executive elements. Compulsory condition for part of them is their ability to hetero-reactivity of one or other sort. The effect of their control action consists only in their relative positioning. Command is entered into the local control block (condition of the task, the goal/objective) and the latter continually watches that the result of actionalways satisfies the command. At that, the command can be set from the outside by other system external in relation to the given one, or the self-training block may “decide” independentlyto change the parameters (but not the goal) set by the command. So, the elements of control may be the same as the executive elements. The difference is only in relative positioning. Director of an enterprise is just the same kind of individual as any ordinary engineer. All elements of the system, both executive and controlling, are structured according to a certain scheme specific for each concrete case (for each specific goal), but all of them must have the “exit” point/outlet/, whence the result of action of the given element is produced, and two “entry points” – for external influence and for entry of the command. If the exit points of any elements are connected to the entry points for external influences of other elements, such elements are executive. In this case executive elements are converters of one kind of results of action into the other, because the results of actions of donor systems represent external influence for the recipient systems (executive elements). They (external influences) ostensibly enter the system and exit it being already transformed into the form of new results of action. If exit points of elementsare connected to command entry points of other elements, such elements are controlling and represent a partof control block. In such cases the result of action of some systems representsthe command for the executive elements, the instruction on how to transform the results of action of donor systems into the resultsof action of recipient systems. But the law of homogeneity of actions and homogeneous interactivity (homo-reactivity) of the exit-entry connection is invariably observed. If, for example, the result of action of the donor element is pressure, the entry point of external influence (for the command) of the recipient element should be able to react to pressure, or otherwise the interaction between the elements would be impossible.

Thirdly, in order to “hack” into the control of other systems the given system should have physical or any other possibility to connect its own exit point of result of action or ownstimulator to the entry point of the command of any other system. In this case this other system becomes the subsystem subordinate to the given control block, i.e. the systems should have physical possibility to combine exits of their stimulators and/or resultsof action with the command entry points of other systems. For this purpose they should be mobile. There are types of devices for which the requirement of physical mobility is not necessary, but, nevertheless, information from one system may flow into control blocks of other devices. These are the so-called relay networks, for example, computer operating networks, cerebral cortex, etc., in which virtual mobility is possible, i.e. the possibility of switching of information flows. In such networks the information can be “pumped over”/downloaded/ in those directions in which it is required. For example, human feet are intended for walking, while hands – for handiwork. How is predestination effected? In principle hands and feet are structured identically, with the same autopodium, the same fingers (the same executive elements). Nevertheless, it is practically impossible, for example, to brush the hair with feet. Why? Because there are certain stereotypes of movements in the cerebral cortex, without which hands are not hands and feet are not feet. But we know cases when a person who lost both hands and nevertheless, he perfectly coped with many household affairs with the help of feet and took part in a circus show. How was it possible? Some kind of remodeling/change/ occurred in his brain and he changed his stereotypes. Cerebral structures which were previously controlling hands have “downloaded” their “knowledge bases” into those cerebral structures which operate the feet. Cerebral cortex was only able to do it thanks to the presence of its property of relay circuits, i.e. the possibility to turn information flows to the directions required for the given purpose. Organization and reorganization of systems may be incidental and target-oriented. In incidental organization or reorganization there is no special control block which has the goal and decision on building of a new system, even more so in such a detail that, for example, such-and-such exit point of a stimulator needs to be connected to such-and such command entry point. Fortuity is determined by probability. That’s where the law of large numbers works, which reads: “If theoretically something may happen, it will surely happen, provided a very large number of occurrences”. The more the number of cases is, the higher is the probability of appearance of any systems, successful and unsuccessful, because fortuity creates the systems, the probability sets their configuration and the external medium makes natural selection. Therefore evolution lasts very long, sorting out multitude of occurrences (development options). It is for this reason that various combinations of connections of parts of systems occur. Therefore, both nonviable monsters and the systems most adaptable to the given conditions may be formed. Those weak are annihilated, while those strong transfer their “knowledge bases” and “bases of decisions” to their posterior generations in the form of genetically embedded properties and instincts. It is not so important in the organization of systems which control block (simple or complex) the coalescing (organizing) systems have. What is only important is that the exit points of stimulators or results of action of one kind of systems connect to the command entry points of the others. Control blocks of coalescing systems may be of any kind, from elementary to self-training. At that, even if the self-training block (i.e. sufficiently developed) “would not want” to connect its command entry point to the exit point of stimulator or the result of action of other system, even the simplest one, it still won’t be able of doing anything if it fails tosafeguard its command entry point. The virus “does not ask the permission” of a cell when it “downloads” its genetic information in the cell’s DNA. The decision on reorganization of the system (purpose) may come from the outside, from the operating system sited higher on a hierarchy scale. It is passive purposefulness, since the initiative comes from the outside. The external system “tells” the given system: “As soon as you see such-and-such system, affix it immediately to yourself”. The system can undertake active actions for such an organization, but it is not yet self-organizing as such, but an imposed (forced, prescriptive) organization. But if it “occurs” to the system that “it would be quite good if that green thing that stuck to me is included as a component in my own structure, since the experience shows it can deliver glucose for me from СО2 and light”, it would then mean self-organizing. Thus, perhaps, once upon a time chlorophyllwas included in the structure of seaweed. Most likely, it did not happen purposefully, but rather accidentally (accidental organization), as we cannot be sure that those ancient seaweeds had a self-training control block, and the independent “thought” may only occur in the system with such control block. This example is only drawn to illustrate what we call a self-organizing system. But the idea to take a stick in one’s hands to extend the hand and get the fruit hanging high on the tree is only a prerogative of the higher animals and the human being, which is a true example of self-organization. Only the systems with self-training control block can evaluate the external situation, properly assess the significance of all the novelty surrounding the given system and draw conclusion on the expediency of reorganization. It is an active purposefulness anyway, since the initiative originated inside the given system and it “decided” on its own and no one “imposed” it on the system. External medium dictates conditions of existence of the systems and it can “force” the system to make the decision on reorganization. But the decision on the time and character of reorganization is taken by the system itself on the basis of its own experience and possibilities. Only systems with self-training control block caninitiateactive purposefulness, can be deliberately the self-organizing systems. Thus, a man has invented work tools, having thus strengthened the possibilities of its body. At that, it should be noted that the decision on self-organizingdoes not indicate at the freedom of choice of the goal of the system, but a freedom of choice of its actions for the achievement of the goal set from the outside. In order to implement its goal in a better way, for example, to survive in such-and-such conditions, the system makes the decision on reorganization so that to better adapt to external conditions and enhance its survival chances.