Смекни!
smekni.com

О роли эксперимента в разработке научных гипотез происхождения жизни (стр. 3 из 4)

В последующем предбиологический отбор коацерватов, по-видимому, шел по, нескольким направлениям. Во-первых, в направлении выработки способности накопления специальных, белковоподобных полимеров, ответственных за ускорение химических реакций. В результате строение нуклеиновых кислот изменялось в направлении преимущественного «размножения» систем, в которых удвоение нуклеиновых кислот осуществлялось с участием ферментов. На этом пути и возникает характерный для живых существ циклический обмен веществ: Во-вторых, в системе коацерватов происходил и отбор самих нуклеиновых кислот по наиболее удачному сочетанию последовательности нуклеотидов. На этом пути формировались гены. Самовоспроизводящиеся системы со сложившейся стабильной последовательностью нуклеотидов в нуклеиновой кислоте уже могут быть названы живыми.

В проблеме возникновения жизни еще много неопределенного, она еще далека от своего окончательного разрешения. Так, например, не ясно, почему все белковые соединения, входящие в состав живого вещества, имеют только «левую симметрию». Какие механизмы предбиологической эволюции могли к этому привести?

Знание условий, которые способствовали возникновению жизни на Земле, позволяют понять, почему в наше время невозможно появление живых существ из неорганических систем. В нашу эпоху отсутствуют условия для синтеза и усложнения органических веществ. Простые соединения, которые могли бы где-то образоваться, сразу же были бы использованы гетеротрофами. Теперь живые существа появляются только вследствие размножения.

Возникнув, жизнь стала развиваться быстрыми темпами (ускорение эволюции во времени). Так, развитие от первичные протобионтов до аэробных форм потребовало около 3 млрд. лет, тогда как с момента возникновения наземных растений и животных прошло около 500 млн. лет; птицы и млекопитающие

2. Развитие органического мира.

2.1 Основные этапы геологической истории Земли.

Прежде чем перейти к рассмотрению развития органического мира, ознакомимся с основными этапами геологической истории Земли. Геологическая история Земли подразделяется на крупные промежутки — эры; эры — на периоды, периоды — на века. Разделение на эры, периоды и века, конечно же, относительное, потому что резких разграничений между этими подразделениями не было. Но все же именно на рубеже соседних эр, периодов преимущественно происходили существенные геологические преобразования: горообразовательные процессы, перераспределение суши и моря, смена климата и проч. Кроме того, каждое подразделение характеризовалось качественным своеобразием флоры и фауны. Геологические эры Земли:

катархей (от образования Земли 5 млрд. лет назад до зарождения жизни);

архей, древнейшая эра (3,5 млрд.— 2,6 млрд. лет);

протерозой, (2,6 млрд. — 570 млн. лет);

палеозой. (570 млн. — 230 млн. лет) со следующими периодами:

кембрий (570 млн. — 500 млн. лет);

ордовик (500 млн. — 440 млн. лет);

силур (440 млн. — 410 млн. лет);

девон (410 млн.—350 млн. лет);

карбон (350 млн. — 285 млн. лет);

пермь (285 млн. — 230 млн. лет);

мезозой (230 млн. — 67 млн. лет) со следующими периодами:

триас (230 млн. — 195 млн. лет);

юра (195 млн. — 137 млн. лет);

мел (137 млн.—67 млн. лет);

кайнозой (67 млн. — до нашего времени) со следующими периодами веками:

палеоген (67 млн. — 27 млн. лет);

палеоцен (67—54 млн. лет);

эоцен (54—38 млн. лет);

олигоцен (38—27 млн. лет);

неоген (27 млн. — 3 млн. лет);

миоцен (27—8 млн. лет);

плиоцен (8—3 млн. лет);

четвертичный (3 млн. — наше время);

плейстоцен (3 млн. — 20 тыс. лет);

голоцен (20 тыс. лет — наше время).

2.2 Начальные этапы эволюции жизни.

Более 3,5 млрд лет назад на дне мелководных, теплых и богатых питательными веществами морей, водоемов возникла жизнь в виде мельчайших примитивных существ. Первый период развития органического мира на Земле характеризуется тем, что первичные живые организмы были анаэробными (жили без кислорода), питались и воспроизводились за счет «органического бульона», возникшего из неорганических систем; иначе говоря, они питались готовыми органическими веществами, синтезированными в ходе химической эволюции, т.е. были гетеротрофами. Но это не могло длиться долго, ведь такой резерв органического вещества быстро убывал. Первый великий качественный переход в эволюции живой материи был связан с «энергетическим кризисом»: «органический бульон» был исчерпан и следовало выработать способы формирования крупных молекул биохимическим путем, внутри клеток, с помощью ферментов. В этой ситуации преимущество было у тех клеток, которые могли получать большую часть необходимой им энергии непосредственно из солнечного излучения.

Такой переход вполне возможен, так как некоторые простые соединения обладают способностью поглощать свет, если они включают в свой состав атом магния (как в хлорофилле). Уловленная таким образом световая энергия может быть использована для усиления реакций обмена, в частности, для образования органических соединений, которые могут сначала накапливаться, а затем расщепляться высвобождением энергии. На этом пути и шел процесс образования хлорофилла и фотосинтеза. Фотосинтез обеспечивает организму но лучение необходимой энергии от Солнца и вместе с тем независимость от внешних питательных веществ. Такие организмы называются автотрофными. Это значит, что их питание осуществляется внутренним путем благодаря световой энергии. При этом, разумеется, поглощаются из внешней среды и некоторые вещества — вода, углекислый газ, минеральные соединения.

Первыми фотосинтетиками на нашей планете были, видимо, цианеи, а затем зеленые водоросли. Остатки их находят в породах архейского возраста (около 3 млрд. лет назад). В протерозое в морях обитало много разных представителей зеленых и золотистых водорослей. В это же время, видимо, появились первые прикрепленные ко дну водоросли.

Переход к фотосинтезу и автотрофному питанию был великим революционным переворотом в эволюции живого. Значительно увеличилась биомасса Земли. В результате фотосинтеза кислород уже и значительных количествах стал выделяться в атмосферу. Первичная атмосфера Земли не соде ржала свободного кислорода, и для анаэробных организмов он был ядом. Потому многие одноклеточные анаэробные организмы погибли в «кислородной катастрофе»; другие укрылись в болотах, где не было свободного кислорода, и, питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду, получив огромное преимущество в способности запасать энергию (аэробные клетки выделяют энергии в 10 раз больше, чем анаэробные). Благодаря фотосинтезу в органическом веществе Земли накапливалось все больше и больше энергии солнечного света, что способствовало ускорению биологического круговорота веществ и ускорению эволюции в целом. Переход к фотосинтезу потребовал много времени. Он завершился примерно 1,8 млрд. лет назад и привел к важным преобразованиям на Земле: первичная атмосфера земли сменилась вторичной, кислородной; возник озоновый слой, который сократил воздействие ультрафиолетовых лучей, а значит, и прекратил производство нового «органического бульона»; изменился состав морской воды, он стал менее кислотным. Таким образом, современные условия на Земле и значительной мере были созданы жизнедеятельностью организмов.

С «кислородной революцией» связан и переход от прокариотов к эукариотам. Первые организмы были прокариотами. Это были такие клетки, у которых не было ядра, деление клетки не включало в себя точной дупликации генетического материала (ДНК), через оболочку клетки поступали только отдельные молекулы. Прокариоты — это простые, выносливые организмы, обладавшие высокой вариабельностью, способностью к быстрому размножению, легко приспосабливающиеся к изменяющимся условиям природной среды.

Но новая кислородная среда стабилизировалась; первичная атмосфера была заменена новой. Понадобились организмы, которые пусть были бы и не вариабельны, но зато лучше приспособлены к новым условиям. Нужна была не генетическая гибкость, а генетическая стабильность. Ответом на эту потребность и явилось формирование эукариотов.

Примерно 1,8 млрд. лет назад. У эукариотов ДНК уже собрана в хромосомы, а хромосомы сосреточены в ядре клетки. Такая клетка воспроизводится без каких-то существенных изменений. Это значит, что в неизменной природной среде «дочерние» клетки имеют столько же шансов на выживание, сколько их имела клетка «материнская».

АЛЕКСАНДР ИВАНОВИЧ ОПАРИН (1894-1980)

Академик Александр Иванович Опарин — советский биохимик, создатель материалистической гипотезы возник- новения жизни на Земле.

С детства будущего ученого интересовала биология: он знал названия многих растений и условия их произрастания. В Московском университете Опарин слушал лекции К. А. Тими- рязева. Учение Ч. Дарвина потрясло его, но одновременно оставило чувство неудовлетворенности: не была решена проблема происхождения живого. Этой проблеме Александр Иванович посвятил всю свою жизнь.

Уже в 1922 г, он сформулировал основные положения своей теории происхождения жиж на Земле в результате эволюции углеродистых соединений.

Но лишь в 1953 г. появилось её первое экспериментальное подтверждение. Американские ученые С. Миллер и Г. Юри поставили эксперимент по программе, намеченной Опариным, и получили результаты, которые побудили ученых различных стран заняться исследованиями возможных путей предбиологической эволюции. В 1957 г. в Москве состоялся 1-й Международный симпозиум по проблеме происхождения жизни. Спустя десятилетие было организовано Международное общество по изучению происхождения жизни, объединившее ученых разных специальностей: биологов и химиков, геологов и астрономов, физиков и математиков. По предложению американских ученых в 1977 г. им была учреждена Золотая медаль имени А. И. Опарина, присуждаемая раз в три года за выдающиеся заслуги в изучении возможных путей происхождения жизни. А. И. Опарин работал не только над проблемой происхождения жизни. Его трудами заложены основы советской технической биохимии: биохимии хлебопечения (совместно с А. Н. Бахом), сыроделия, виноделия, хранения овощей и др. Более 50 лет жизни посвятил Опарин подготовке советских биохимиков, в течение 25 лет он заведовал кафедрой биохимии растений Московского государственного университета.