Изучение тригонометрического материала в школьном курсе математики

СОДЕРЖАНИЕ: Рассмотрение методики введения в школьный курс математики понятий синуса, косинуса, тангенса, основных тригонометрических тождеств (на геометрическом и алгебраическом материалах), функций, преобразований, способов решения уравнений и неравенств.

Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра МПМ

Изучение тригонометрического материала в школьном курсе математики

Реферат

Исполнитель:

Студентка группы М-42 Головачева А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Лебедева М.Т.

Гомель 2007


Содержание

Введение

1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества

2. Методика введения определений тригонометрических функций углов от 0° до 180°

3. Методика изучения тригонометрических функций в курсе алгебры

4. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению

Заключение

Литература


Введение

Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00 до 1800 ; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.

Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".


1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества

Знакомство с тригонометрическим материалом начинается в курсе геометрии при знакомстве с прямоугольным треугольником. Понятия

,
и
острых углов треугольника вводится для углов от
до
, как отношение сторон этого треугольника. Предварительно учащиеся должны усвоить названия сторон прямоугольного треугольника: катеты (стороны прямого угла) и гипотенуза (сторона противолежащая прямому углу). Для этого необходимо предложить учащимся прямоугольные треугольники, разнообразные по расположению вершин прямого угла и предложить назвать стороны треугольника.

Назовите катеты в

ABC,
APN. Назовите гипотенузы в
LKM и
EFA. Будут ли гипотенузами следующие отрезки: AB, KL, AP, AN, EF, FA в указанных треугольниках и почему?

Следующие выражения "прилежащий" и "противолежащий" отрабатываются на следующем этапе. Для этого необходимо по указанным треугольникам предложить учащимся назвать прилежащие и противолежащие острым углам катеты. Назвать отрезки: KL, PN, EA и попросить учащихся назвать те углы, против которых лежат эти катеты или, которым они прилегают.

Первым вводится понятие

угла и доказывается теорема: " Косинус угла зависит от градусной меры угла и не зависит от расположения и размеров треугольника". Это определение уже " работает" при доказательстве теоремы Пифагора.

С остальными понятиями учащиеся знакомятся в пункте " Соотношения между сторонами и углами в прямоугольном треугольнике". sin

, tg

Формируется свойство: синус и тангенс угла так же, как и косинус, зависят от величины угла.

Для синуса это доказывается так:

=
,

так как косинус зависит только от величины угла, то и синус зависит только от величины угла.

Из определений

,
и
получаем следующие правила:

- Катет, противолежащий углу

, равен произведению гипотенузы на синус
;

- Катет, прилежащий к углу

, равен произведению гипотенузы на косинус
;

- Катет, противолежащий углу

, равен произведению второго катета на тангенс
.

По этим правилам можно находить неизвестные элементы в прямоугольном треугольнике.

Перечисленные правила могут быть выведены учащимися самостоятельно. Для этого предлагаются вопросы: В прямоугольном треугольнике MNP, LN=

, LM=
, гипотенуза MP=m. Найти длины катетов этого треугольника. ( Задача решается по определению).

Раньше по программе тригонометрические функции и соотношения между углами и сторонами в прямоугольном треугольнике изучались в курсе 8 класса.

После введения понятий

,
и
рассматривались решения основных задач, связанных с отысканием длин сторон и величин углов в прямоугольном треугольнике.

Задача №1. Дано: a, b. Требуется найти

A,
B, c.

Задача №2. Дано: a, c. Требуется найти

A,
B, b.

Задача №3. Дано: a,

A. Требуется найти
A, b, c.

Задача №4. Дано: a,

B. Требуется найти
A, b, c.

Задача №5. Дано: a,

A. Требуется найти
B, a, b.

По действующей программе эти задачи в курсе 8 класса (бывший 7 класс) заменены такой: В прямоугольном треугольнике даны: гипотенуза c и острый угол

. Найдите катеты, их проекции на гипотенузу и высоту, опущенную на гипотенузу.

Вводятся основные тригонометрические тождества:

,
,
,
.

В частности, основное тригонометрическое тождество выводится из формулировки теоремы Пифагора:

,
.

Учащиеся знакомятся с некоторыми свойствами функций острого угла: 1) при возрастании острого угла

и
возрастают, а
- убывает; 2) для любого острого угла
:
,
; которые формулируются как теоремы. Их доказательство связывается с соотношениями острых углов в прямоугольном треугольнике:

,
, тогда
,
.

,

тогда из равенства правых частей получаем:

.

, тогда
.

Вывод свойства возрастания и убывания выглядит так:

Пусть

и
- острые углы,
и
, и она пересекает стороны углов
и
в точках
и
соответственно.

Так как

, то точка
лежит между точками
и
, тогда
. А значит, по свойству наклонных,
(через сравнение их проекций). Так как
,
, то косинус убывает. А так как
, то синус возрастает.

2. Методика введения определений тригонометрических функций углов от
до

Расширение области определения тригонометрических функций от

до
происходит в теме: "Декартовы координаты на плоскости".

Рассмотрим окружность с центром в начале координат произвольного радиуса R. Откладываем в полуплоскость

угол
. Пусть точка
имеет координаты
и
.
,
, то из треугольника
:
,
.

Определяются значения
и
этими формулами для любого угла α (для
0 -исключается).


Можно найти значения этих функций для углов 900 , 00 , 1800 . Доказывается, что для любого угла α , 00 <α<1800 ,

.

повернем подвижный радиус на угол 1800 -α=

по гипотенузе и острому углу: => OB1 =OB; A1 B1 =AB => x = -x1 ,y = y1 =>

Итак, в школьном курсе геометрии понятие тригонометрической функции вводится геометрическими средствами ввиду их большей доступности.

Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00 до 1800 ; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.

Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".

Конкретизировать, например, понятие cos острого угла прямоугольного треугольника, можно по следующей методической схеме:

1) построить на миллиметровой бумаге прямоугольный треугольник ABC;

2) обозначить величину острого угла А буквой α;

3) измерить (по клеткам) прилежащий катет АС и гипотенузу АВ;

4) вычислить отношение

5) записать значение cos α (делается следующая запись cos α ≈ в которой для α не указывается его конкретное значение);

6) измерить транспортиром угол α, найти его величину и записать значение косинуса этого угла данного прямоугольного треугольника.

Определенные трудности в изучение элементов тригонометрии (по Пифагору) порождает теорема: "Косинус угла α зависит только от градусной меры угла". Необходимость изучения данной теоремы можно разъяснить учащемуся так: Пусть требуется на основании определения найти cos 370 . Предположим, что это задание выполняют отдельно друг от друга несколько человек. Чтобы найти cos 370 , они построят прямоугольный треугольник (каждый свой) с углом в 370 , измерят прилежащий катет и гипотенузу, найдут отношение прилежащего катета к гипотенузе. Полученное число и будет являться cos 370 . Есть ли гарантия, что каждый ученик получит один и тот же ответ? Этот вопрос возникает по той причине, что каждый строит свой треугольник, получает свои значения длин прилежащего катета и гипотенузы. Так, может быть, и искомое отношение у каждого ученика будет какое-то свое? Понятно, что если бы значение cos 370 при переходе от одного прямоугольного треугольника к другому изменялось, то ценность такого понятия в математике была бы не велика. Изучаемая терема является ответом на поставленные вопросы. Она утверждает, что косинус острого угла зависит не от выбора прямоугольного треугольника, а только от меры угла.

При решении прямоугольных треугольников необходимо обратить внимание учащегося на тот факт, что с каждой из формул для cos, sin и tg α связывается еще две формулы:

Определение cos, sin, tg углов от 00 до 1800 являются генетическими, т.к. в них указываются построения и вычисления, позволяющие найти значение тригонометрической функции.

В пособие говорится следующее (стр. 132, 1, 2 абзац), обратите внимание учащихся на следующее обстоятельство. Ранее для острых углов были установлены некоторые тригонометрические тождества. "Справедливы ли эти тождества для углов от 00 до 1800 . Справедливы ли прежние доказательства этих тождеств или необходимо привести новые?"

Сравним доказательства основного тригонометрического тождества:

для острых углов и для углов от 00 до 1800 :

00 <α<900

00 ≤α≤1800

1

1

2

2

3

3

В курсе "Алгебра 9" обобщается определение cos, tg и sin α на случай произвольного угла α и вводится понятие ctg α. Возможность такого обобщения – во введении понятия угла поворота, положительного и отрицательного угла, понятия полного оборота. Доказывается, что тригонометрические функции, их значение, не зависит от длины радиуса.

Здесь же приведены с доказательствами основные тригонометрические формулы, формулы сложения и их следствия.

3. Методика изучения тригонометрических функций в курсе алгебры

Традиционная методическая схема изучения тригонометрических функций:

· в начале определяются тригонометрические функции для острого угла прямоугольного треугольника;

· затем введенные понятия обобщаются для углов от

до
;

· тригонометрические функции определяются для произвольных угловых величин и действительных чисел.

В курсе алгебры и начала анализа осуществляется заключительный этап изучения, который включает:

a) Закрепление представлений учащихся о радианной мере угла; отработка навыков перехода от градусной меры к радианной и наоборот;

b) Формирование представлений об углах с градусной мерой, большей

; формирование представлений об углах с положительной и отрицательной градусными мерами; перевод этих градусных мер в радианы (положительные и отрицательные действительные числа);

c) Описание тригонометрических функций на языке радианной меры угла;

d) Утверждение функциональной точки зрения на

,
, и
(трактовка
,
, и
как функций действительного аргумента, установление области определения, области значений, построение графика функции, установление промежутков монотонности, знакопостоянства и т.д.);

e) Повторение известных и ознакомление с новыми тригонометрическими тождествами, ключом которых является тождество

;

f) Применение тригонометрических тождеств в тождественных преобразованиях и при решении задач по стереометрии.

В курсе "Алгебра 9" учащиеся знакомятся с функциональной точкой зрения. Выражения

и
определимы при
, т.к
угла поворота можно найти соответствующее значение дробей
и
. Выражение
имеет смысл при
, кроме углов поворота
,
, …, т.к. имеет смысл дробь
.

Каждому допустимому значению

соответствует единственное значение
,
,
и
. Поэтому
,
,
и
являются функциями угла
. Их называют тригонометрическими функциями.

Учащиеся знакомятся со следующими общефункциональными свойствами этих функций:

1. область значения

и
-
, для
и
- множество всех действительных чисел

2. промежутки знакопостоянства:

, то значит
зависит от знака
и т.д.

3.

,
и
являются нечетными функциями, а
является четной функцией

4. при изменении угла на целое число оборотов значение

,
,
,
не изменится (под обратным понимаем поворот на
).

Введение радианной меры угла основывается на том факте, что отношения длины окружности к её радиусу постоянно для данного центрального угла и не зависит от выбора концентрических окружностей. По этой причине меру центрального угла можно охарактеризовать действительным числом

. Если
положить равным 1, то радианная мера центрального угла равна 1, т.е.
.

Тогда для каждого угла, заданного в градусах, достаточно вычислить соответствующую дугу единичной окружности. Длина такой дуги будет выражать меру данного угла в радианах.

Радианная мера угла позволяет любому действительному числу поставить в соответствие определенную градусную меру угла по формуле:

, где
.

Переход от радианной меры угла к действительному числу осуществляется на основании того, что

. Учащимся следует показать изменение величин углов по координатным углам:

1 четверть:

,
;

2 четверть:

,
;
и т.д.

Определение тригонометрической функции

выглядит так:

Опр. Окружность радиуса 1 с центром в начале координат называют единичной

окружностью. Пусть точка

единичной окружности получена при повороте точки
на угол в
радиан. Ордината точки
- это синус угла
. Числовая
функция, заданная формулой
, называется синусом числа, каждому числу
ставится в соответствие число
.

Устанавливаются области определения и значения функций, напоминаются свойства:

;
.

Построим график функции
на
.

Делим единичную окружность и отрезок
на 16 равных частей.

Через точку

проводим прямую, параллельную
. Проводим прямую
до пересечения с построенной прямой. Получим одну из точек графика функции
, называемого синусоидой.

Отрезок оси
, с помощью которого находятся значения синуса, называется линией синусов.

Для построения графика синуса вне этого отрезка заметим, что

. Поэтому во всех точках вида
, где
, значения синуса совпадают, и, следовательно, график синуса на всей прямой получается из построенного графика с помощью параллельных переносов его вдоль оси
.

Для построения графика косинуса следует вспомнить, что

. Следовательно, значение косинуса в произвольной точке
равно значению синуса в точке
. Это значит, что график косинуса получается из графика синуса с помощью параллельного переноса на расстояние
в отрицательном направлении оси
. Поэтому график функции
также является синусоидой.

Для функций
и
определяется аналогично. Область определения
- множество всех чисел, где
.

Построение графика: проведем касательную

к единичной окружности в точке
.

Пусть

произвольное число, для которого
. Тогда точка
не лежит на оси ординат, и, следовательно, прямая
пересекает
в некоторой точке
с абсциссой 1. Найдем ординату этой точки. Для этого заметим, что прямая
проходит через точки
и
. Поэтому она имеет уравнение
.

Абсцисса точки

, лежащей на этой прямой, равна 1. Из уравнения прямой
находим, что ордината точки
равна
. Итак, ордината точки пересечения прямых
и
равна
. Поэтому прямую
называют линией тангенсов.

Нетрудно доказать, что абсцисса точки
пересечения прямой
с касательной m к единичной окружности, проведённой через точку
, равна
при
.


Поэтому прямую m называют линией котангенсов.

Область значений
- вся числовая прямая. Докажем это для функции
. Пусть
- произвольное действительное число. Рассмотрим точку
. Как только что было показано,
равен
. Следовательно, функция
принимает любое действительное значение
, ч.т.д.

Построение графика аналогично построению
.

Можно построить схему, позволяющую изобразить график тригонометрических функций:

1) Начертить единичную окружность, горизонтальный диаметр которой служит продолжением оси

. Разделить её на равные части (например,16).

2) Для функции

выбираем отрезок
, для функции
-
и делим их на то же равное число частей.

3) По окружности находим соответствующее число значений этих функций.

4) Точки пересечения горизонтальных линий, отвечающих значениям функций и вертикальных линий, отвечающих значениям аргумента, представляют собой точки графика.


4. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению

Тригонометрический материал изучается в школьном курсе в несколько этапов.

1) Функции тригонометрических функций для углов от

до

(прямоугольный треугольник, планиметрия);

2) Тригонометрические функции для углов от

до
(тема: "Декартовы координаты на плоскости; геометрия");

3) Тригонометрические функции для любого действительного числа.

Параллельно изучению теоретического материала учащиеся знакомятся с тригонометрическими формулами, объём которых будет постепенно рассширяться. Умение "выделить" эти формулы в дальнейшем поможет в преобразовании тригонометрических выражений.

К обязательным результатам обучения за курс геометрии в 7-9 классах относиться умение решать типичные задачи на вычисление значений геометрических величин (длин, углов, площадей) с привлечением свойств фигур, аппарата алгебры и тригонометрии.

Например:

1) В прямоугольном треугольнике найдите катеты, если его гипотенуза равна 5 см, а один из углов равен

.

2) В прямоугольном треугольнике катет равен 4 см, а прилежащий к нему угол равен

. Найдите другой катет и гипотенузу.

3)

В треугольнике ABC: AB=3см, BC=6 см,
. Определите
.

4) В треугольнике ABC известны стороны: AB=4 см; BC=5 см; AC=6 см.

Найдите угол B.


Существуют различные доказательства формулы косинуса суммы двух аргументов.

Одно из наиболее простых доказательств основано на применении системы координат и формулы расстояние между двумя точками. Воспроизвести доказательство по опорному конспекту:

1.

;

2.

;

3.

;

4.

;

5.

.

6.

;

, ч.т.д.

;
-
.


С другой стороны:

-

-
-

- теорема сложения.

и по доказанной формуле.

Для доказательства

суммы и разности двух углов используются формула приведения, которые помогают преобразовать функции от аргументов вида:

,
,
,
.

Проведём радиус

, длина которого равна
, на угол
: и получили радиус
, где
и на угол
и получим радиус
, где
.

,
:
,
.


- прямоугольник. Повернём его на угол
вокруг точки
:

;
;
, т.е.

;
, т.е:

;
, по

Аналогично:

Тогда:

и т.д.

К функциям от углов

можно прийти и из геометрических соображений.

Формулы приведения для

и
выводится из определения этих функций и ранее полученных формул приведения для синуса и косинуса. После этого полученные результаты сводятся в одну таблицу, с помощью которой можно сформулировать мнемоническое правило. Желательно учащимся предложить алгоритм применения формул приведения. Поясним его на примере:

{определяем четность, в которой оканчивается угол
- II четверть; определяем знак данной функции в этой четверти – " - ". Изменяется ли название функции – нет, поэтому:}
= - cos
.

Вернёмся к выводу формулы синуса суммы и разности двух углов.

,

а затем применяется уже известная формула.

Формулы двойного угла выводятся из формулы синуса и косинуса суммы и разности двух углов, положив

.

Сумму и разность тригонометрических функций можно преобразовать в произведение, используя следующий пример:

={
,
}=

=

,

но:


Таким образом:

Замечание: при ознакомлении учащихся с формулами следует добиваться от них проговаривания словесных формулировок доказываемых формул.

Например: сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.

В курсе алгебры 9 класса изучается тема: "Элементы тригонометрии" (30 часов):

1) радианное измерение углов, sin, cos, tg произвольного угла, их нахождение с помощью калькулятора;

2) основные тригонометрические тождества:

Их применение для вычисления значений sin, cos, tg;

3) формулы приведения; sin, cos суммы и разности двух углов; sin и cos двойного угла;

4) тождественные преобразования тригонометрических выражений; основная цель – сформировать умения выполнять тождественные преобразования несложных тригонометрических выражений с использованием формул, указанных в программе:

Рассмотрим некоторые примеры преобразований тригонометрических выражений:

Задача №1.

Доказать тождество:

Преобразуем левую часть и получим, применив формулы приведения:

8
cos4
+sin8
=2sin8
cos4
+2sin4
cos4
=2cos4
(sin8
+sin4
)=4cos4
sin6
cos2
, и т.д.

Задачи №2.

Упростить выражение

а)

Можно применить формулы понижения степени:

=

{воспользуемся преобразованием разности косинусов в произведение по формуле:
} =

б)


Задача №3

Преобразовать в произведение:

а) cos5

+sin8
+cos9
+cos12
=(cos5
+cos12
)+(cos8
+cos9
)=

=2cos17/2

cos7/2
+2cos17/2
cos
/2=2cos17/2
(cos7/2
+cos
/2)=

=4cos17/2

cos2
cos3/2
=4cos3/2
cos2
cos17/2

б) 3+4cos4

+cos8
=3(1+cos4
)+(cos4
+cos8
)=6cos2 2
+

+2cos6

cos2
=2 cos2
(3cos2
+cos6
)=2cos2
((cos2
+|cos6
)+

+2cos2

)=2cos2
(2cos4
cos2
+2cos2
)=4cos2 2
(cos4
+cos2
)=

=4cos2 2

cos2 2
=8cos4 2

Задача №4

Найти sin4

+cos4
, если известно, что:

sin

-cos
=1/2

sin4

+cos4
=(sin2
+cos2
)2 -2sin2
cos2
=1-2sin2
cos2
=

=1-1/2sin2 2

={sin4
-cos
=1/2
(sin
-cos
)2 =

=1-2sin

cos
=1/4
sin2
=3/4}=

Задача №5

Вычислить:

sin

=-cos(2arctg4/3)={обозначим arctg4/3 через y, тогда получим cos2y, который нужно преобразовать в тангенс половинного угла. Применим формулу
и получим}=


Заключение

Определенные трудности в изучение элементов тригонометрии (по Пифагору) порождает теорема: "Косинус угла α зависит только от градусной меры угла". Необходимость изучения данной теоремы можно разъяснить учащемуся так: Пусть требуется на основании определения найти cos 370 . Предположим, что это задание выполняют отдельно друг от друга несколько человек. Чтобы найти cos 370 , они построят прямоугольный треугольник (каждый свой) с углом в 370 , измерят прилежащий катет и гипотенузу, найдут отношение прилежащего катета к гипотенузе. Полученное число и будет являться cos 370 . Есть ли гарантия, что каждый ученик получит один и тот же ответ? Этот вопрос возникает по той причине, что каждый строит свой треугольник, получает свои значения длин прилежащего катета и гипотенузы. Так, может быть, и искомое отношение у каждого ученика будет какое-то свое? Понятно, что если бы значение cos 370 при переходе от одного прямоугольного треугольника к другому изменялось, то ценность такого понятия в математике была бы не велика. Изучаемая терема является ответом на поставленные вопросы. Она утверждает, что косинус острого угла зависит не от выбора прямоугольного треугольника, а только от меры угла.


Литература

1. К.О. Ананченко "Общая методика преподавания математики в школе", Мн., "Унiверсiтэцкае",1997г.

2.Н.М.Рогановский "Методика преподавания в средней школе", Мн., "Высшая школа", 1990г.

3.Г.Фройденталь "Математика как педагогическая задача",М., "Просвещение", 1998г.

4.Н.Н. "Математическая лаборатория", М., "Просвещение", 1997г.

5.Ю.М.Колягин "Методика преподавания математики в средней школе", М., "Просвещение", 1999г.

6.А.А.Столяр "Логические проблемы преподавания математики", Мн., "Высшая школа", 2000г.

СКАЧАТЬ ДОКУМЕНТ

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта - спам опубликован не будет

Ваше имя:

Комментарий

Copyright © MirZnanii.com 2015-2017. All rigths reserved.