Смекни!
smekni.com

Использование разнообразных форм уроков при изучении темы "Квадратные уравнения" в 8 классе (стр. 3 из 10)

3. Если ах2+ bх = 0, b≠ 0. Уравнения такого вида решаются по алгоритму:

1) вынести общий множитель за скобки;

2) найти x1, x2.

Например, х2 - 3х = 0. Перепишем уравнение х2 - 3х = 0 в виде х (х - 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х - 3) = 0 получится число, не равное нулю.

Итак, данные примеры показывают, как решаются неполные квадратные уравнения:

1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;

2) если уравнение имеет видах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b= 0. В итоге получается два корня: x1 = 0; x2 = -

;

3) если уравнение имеет вид ах2 + с = 0, то его преобразуют к виду

ах2 = - с и далее х2. = -

В случае, когда -
< 0, уравнение х2 = -
не имеет действительных корней (значит, не имеет корней и исходное уравнение ах2 + с = 0). В случае, когда -
> 0, т.е. -
= m, где m>0, уравнение х2 = mимеет два корня
=
,
= -
, в этом случае допускается более короткая запись
=
. Таким образом, неполное квадратное уравнение может иметь два корня, один корень, ни одного корня.

На втором этапе осуществляется переход к решению полного квадратного уравнения. Это уравнения вида ах2 + bx+ c= 0, где a,b,c - заданные числа, а ≠ 0, х - неизвестное.

Любое полное квадратное уравнение можно преобразовать к виду

, для того, чтобы определять число корней квадратного уравнения и находить эти корни. Дискриминант уравнения равен: D= p2 - 4q. Рассматриваются следующие случаи решения полных квадратных уравнений: D< 0, D= 0, D> 0.

1. Если D< 0, то квадратное уравнение ах2 + bx+ c= 0, где а ≠ 0 не имеет действительных корней. Например, 2х2+ 4х + 7 = 0. Решение: здесь а = 2, b= 4, с = 7. D= b2 - 4ас = 42 -

= 16 - 56 = - 40. Так как D< 0, то данное квадратное уравнение не имеет действительных корней.

2. Если D= 0, то квадратное уравнение ах2 + bx+ c= 0, где а ≠ 0, имеет два равных корня, которые находятся по формуле

.

Например, 4х

- 20х + 25 = 0. Решение: а = 4, b= - 20, с = 25. D= b2 - 4ас = (-20) 2 -
= 400 - 400 = 0. Так как D= 0, то данное уравнение имеет два равных корня, которые находятся по формуле
. Значит,

3. Если D> 0, то квадратное уравнение ах2 + bx+ c= 0, где а ≠ 0 имеет два корня, которые находятся по формулам:

;
(1)

Например, 3х2+ 8х - 11 = 0. Решение: а = 3,b= 8, с = - 11. D= b2 - 4ас = 82 -

(-11) = 64 + 132 = 196. Так как D> 0, то данное квадратное уравнение имеет два корня. Эти корни находятся по формулам:

.

Составляется алгоритм решения уравнения вида ах2 + bx+ c= 0.

1. Вычислить дискриминант Dпо формуле D= b2 - 4ас.

2. Если D< 0, то квадратное уравнение ах2 + bx+ c= 0 не имеет корней.

3. Если D= 0, то квадратное уравнение имеет два равных корня, который находятся по формуле

4. Если D> 0, то квадратное уравнение ах2 + bx+ c= 0 имеет два корня:

;
.

Это алгоритм универсален, он применим как к неполным, так и к полным квадратным уравнениям. Однако неполные квадратные уравнения обычно по этому алгоритму не решают.

Математики - люди практичные, экономные, поэтому пользуются формулой:

. (2)

Итак, можно сделать вывод, что квадратные уравнения можно решать подробно, используя сформулированное выше правило; можно - записать сразу формулу (2) и с ее помощью делать необходимые выводы [1,98].

На третьем этапе рассматриваются приведенные квадратные уравнения, которые имеют вид х2+px+ q= 0 (3), где pи q - данные числа. Число p - коэффициент при х, а q - свободный член.

Дискриминант уравнения равен: D= p2 - 4q. Приведенные квадратные уравнения получаются из полного квадратного уравнения следующим образом:

Где

и
.

Рассматривают 3 случая:

1. D> 0, тогда уравнение (3) имеет два корня, вычисляемые по формуле

.

(Приложение 1) (4)

2. D= 0, тогда уравнение (3) имеет единственный корень, или, как говорят, два совпадающих корня:

3. D< 0, то уравнение не имеет корней. Обычно в случае приведенного квадратного уравнения (3) вместо Dрассматривается выражение

, имеющее тот же знак, что и D. При этом формулу корней приведенного квадратного уравнения (4) записывают так:

Отсюда следует, что:

1) если

то уравнение (3) имеет два корня;

2) если

то уравнение имеет два совпадающих корня;

3) если

то уравнение не имеет корней.

Важным моментом в изучении квадратных уравнений является рассмотрение теоремы Виета, которая утверждает наличие зависимости между корнями и коэффициентами приведенного квадратного уравнения [23,17].

Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. (Приложение 2)

Иначе говоря, если x1 и x2 - корни уравнения х2+px+ q= 0, то


x1 + x2 = - p,

x1 x2 = q. (5)

Данные формулы называют формулами Виета в честь французского математика Ф. Виета (1540-1603), (Приложение 3) который ввел систему алгебраических символов, разработал основы элементарной алгебры. Он был одним из первых, кто числа стал обозначать буквами, что существенно развило теорию уравнений.

Например, приведенное уравнение х2 - 7х +10 = 0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Видно, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Справедлива также теорема, обратная теореме Виета.

Теорема, обратная теореме Виета. Если для чисел x1, x2, p, qсправедливы формулы (5), то x1 и x2 - корни уравнения х2+ px+ q= 0 [2,49].

Теорема Виета и теорема, обратная ей, часто применяются при решении различных задач.

Например. Напишем приведенное квадратное уравнение, корнями которого являются числа 1 и - 3.

По формулам Виета

p= x1 + x2 = - 2, q= x1 x2 = - 3.

Следовательно, искомое уравнение имеет вид х2 + 2х - 3 = 0.

Сложность освоения теоремы Виета связана с несколькими обстоятельствами. Прежде всего, требуется учитывать различие прямой и обратной теоремы. В прямой теореме Виета даны квадратное уравнение и его корни; в обратной - только два числа, а квадратное уравнение появляется в заключении теоремы. Учащиеся часто совершают ошибку, обосновывая свои рассуждения неверной ссылкой на прямую или обратную теорему Виета.

Например, при нахождении корней квадратного уравнения подбором ссылаться нужно на обратную теорему Виета, а не на прямую, как часто делают учащиеся. Для того чтобы распространить теоремы Виета на случай нулевого дискриминанта, приходится условиться, что в этом случае квадратное уравнение имеет два равных корня. Удобство такого соглашения проявляется при разложении квадратного трехчлена на множители