Смекни!
smekni.com

Методика использования визуальных моделей в обучении школьников решению математических задач (стр. 10 из 13)

Этот этап нужно начать с разбора простых задач, указав признаки, по которым мы применяем именно данный метод.

В зависимости от значений параметра a найти количество корней уравнения

.

Данное выражение можно преобразовать к виду, для которого применим метод «движущаяся прямая». Так как
не является решением данного уравнения, то его можно преобразовать к виду
, но для ответа на вопрос нам потребуется построить график функции
, что является достаточно трудной задачей, по сравнению с построением графика функции
. Изученные свойства линейной функции позволяют нам пользоваться только последним построением. Построим в системе координат график функции
. При каких значениях параметра мы получим прямые параллельные ветвям графика функции
? Построим графики линейной функции для значений параметра 1 и –1 (рис. 9). Из рисунка видно, что если график функции yx находится между лучами, лежащими выше оси абсцисс, то уравнение имеет одно решение, если между осью абсцисс и графиком функции y = –x – два решения, и если лежит вне указанных областей, то решений не имеет. Укажите значения параметра для названных областей.

Если выражение имеет вид, который позволяет решить задачу с параметром методом «вращающаяся прямая», то его достаточно просто преобразовать к виду, который позволяет нам решить данную задачу метолом «движущаяся прямая». Для этого достаточно поделить левую и правую часть выражения на х, следя при этом за равносильностью преобразований. Этот момент должен быть рассмотрен при решении задач для формирования умений находить более рациональный путь в том или ином задании. Относительная простота построения графика функции в случае решения методом «вращающаяся прямая» компенсируется более трудным получением ответа из графической модели, так как иногда для его получения требуется переходить к уравнению, используя производную, рассматривать характер монотонности функции, производить относительно трудные сопутствующие вычисления. Проще и нагляднее в этом отношении пользоваться методом «движущаяся прямая» и, если построение функции – не слишком трудная задача, то, скорее всего, этот метод является более рациональным. Для формирования умения выбирать более рациональный путь нужно дать задание решить обоими способами задачу с параметром. Для формирования и закрепления умений и навыков работы с графическими моделями при решении задач с параметрами нужно постепенно переходить к более сложным заданиям, в которых варьируются значения независимой переменной, условия заданий и увеличивается арсенал требующихся аналитических методов.

Метод «неизвестное-параметр».

При решении задач данным методом параметр объявляется переменной. В системе координат строится множество точек, которое задает уравнение или система уравнений, при помощи этого построения находятся требуемые значения параметра. В основе данного метода лежит так называемый метод областей – построение множества точек плоскости, которое задает данное уравнение с двумя переменными или система уравнений. Метод областей можно в некотором смысле назвать обобщением метода интервалов на случай уравнений с двумя переменными. Овладеть методом областей – значит уметь строить множества точек, задаваемые уравнениями в системе координат, а это умение предполагает в свою очередь умения построения графиков функций и решения простейших неравенств с двумя переменными.

Подготовительная работа в данном случае представляет собой обучение методу областей. Обучение нужно начать с построения множеств точек, которые являются решениями простейших неравенств. Это связанно с тем, что решение более сложных неравенств сводится к решению простейших. Кроме того, на их примере можно наглядно продемонстрировать алгоритм построения множеств и обосновать его, проведя аналогию с методом интервалов.

Построить в координатной плоскости множество точек удовлетворяющих неравенству

.

Преобразуем данное неравенство к виду

. Построим в системе координат прямую
. Данная прямая разбивает плоскость на две области. Какая-то из этих областей будет искомым множеством точек. Для того, чтобы её определить, нужно, как и в методе интервалов, подставить точку с области и посмотреть удовлетворяет ли она неравенству. Отличие от метода интервалов состоит в том, что точка имеет две координаты: их и нужно подставлять вместо переменных. Та область, точка которой удовлетворяет неравенству и будет искомым множеством точек. В данном случае это будет полуплоскость лежащая выше прямой. Так как неравенство нестрогое, то прямая сама принадлежит искомому множеству.

Далее нужно построить множество для системы неравенств. Лучше сделать это, дополнив уже рассмотренное неравенство до системы, добавив линейное неравенство.

В последствии нужно решить систему заданий, которая предполагает переход от линейных неравенств к линейным неравенствам с модулями, к произвольным выражениям, к выражениям которые требуют преобразований.

Указать множество точек плоскости, удовлетворяющих условиям:

;
;
;
;
.

Каждое из этих заданий преобразуется к равносильной системе, где используются построения для элементарных функций.

На этапе обучения моделированию нужно перейти к задачам с параметрами. На этом этапе нужно объяснить, что параметр рассматривается как переменная, и показать, что существуют два случая: параметр объявляется независимой переменной и параметр зависит от значений другой переменной. По сути, мы получаем тот же метод областей, но задача усложняется в связи с тем, что кроме построения мы должны, опираясь на иллюстрацию, произвести отбор значений параметра которые требуются в задании. Разбор задач нужно начать с относительно простых заданий, для того чтобы показать действие данного метода.

При каких значениях параметра aимеет единственное решение система неравенств

Пусть a будет переменной. Для построения графической модели системы содержащей неравенство нам потребуется метод областей. Зависимая переменная a. Это связанно с тем, что a проще выразить через x. В качестве независимой переменной всегда выбирают ту, которую проще выразить через другую. Постройте в системе координат xOa множество точек, задаваемое системой. Мы получили фигуру (рис. 10) ограниченную параболами

и
. Сейчас мы воспользуемся методом «движущаяся прямая», для каждого положения прямой мы получаем в пересечении с множеством отрезок, точку или пустое множество. Если прямая a=a0 пересекает множество по отрезку АВ, то это означает, что при a=a0, система неравенств имеет решения равные абсциссам всех точек отрезка АВ. В задаче же нужно найти такие значения параметра, при которых система имела бы одно решение. Из рисунка видно, что такими значениями параметра являются
и
.

Этап обучения работе с моделями начинается после того, как разобрали приведенное выше задание. Он предполагает решение простых заданий, но здесь, после того как задание решено, можно изменить его условие, а рисунок оставить тем же и, продолжая так, получить всю возможную информацию, которую может дать иллюстрация. Здесь делается основной упор не на решение трудных заданий, а на работу с графическими моделями. Здесь же нужно отработать умение выбирать независимую переменную. При построении моделей можно предложить использование разных цветов, например, разными цветами можно изображать включаемые и не включаемые линии, а так же оси координат, и конечное искомое множество. Это усилит наглядность рисунка и может избавить от случайной ошибки. После того как отработаны все приемы по построению и интерпретации графических моделей, можно переходить к более сложным заданиям, где в качестве подзадачи возникает задача приведения выражения к виду, удобному для графического моделирования.