Смекни!
smekni.com

Методика использования визуальных моделей в обучении школьников решению математических задач (стр. 4 из 13)

Визуализация текстовой задачи – это использование моделей (средств наглядности) для нахождения значений величин, входящих в задачу, данных и искомых чисел, а также для установления связей между ними.

Методика обучения моделированию текстовых задач включает следующие этапы:

1) подготовительная работа к моделированию текстовых задач;

2) обучение моделированию текстовых задач;

3) закрепление умения решать задачи с помощью моделирования.

Подготовительная работа должна быть направлена на выполнение предметных действий. Отображая эти действия графически, сначала в виде рисунка, затем в виде модели, учащиеся в дальнейшем подходят к знаково-символической форме: равенству, формуле, уравнению и т. д. Прежде чем представить задачу в виде модели, необходимо ознакомиться с ее содержанием. При решении текстовой задачи учитель часто сталкивается с проблемой текста в математике. Проблема в том, что его нужно «перевести» с русского на математический язык и наоборот [11, 20]. В этом случае необходимо выявление «математического ядра» задачи. Для этого нужно выделить величины и отношения между ними, которые заключены, как говорят дети, в «главных» словах и числах (буквах)». Можно с учащимися договориться подчеркивать слова карандашом в книге и цветным мелом на доске. Вопрос задачи всегда выделяем особо – это цель наших действий. Приведем пример.

У Маши было 9 конфет. Она отдала 3 конфеты Толику и 2 конфеты Максиму, а 2 конфеты съела сама. Сколько конфет осталось у Маши.

Таким образом, исключение части слов не повлияло на математическую модель задачи, то есть учащиеся совершенно безболезненно смогут понять, а, следовательно, решить данную задачу.

После ознакомления с содержанием задачи нужно приступить к ее моделированию [12]. Особенностью предметного моделирования простых текстовых задач является использование предметов, замещающих образец. Это могут быть полоски бумаги, геометрические фигуры и так далее. Особенности графического моделирования простых текстовых задач в том, что они строятся как частные случаи отношения величин: величины в задаче находятся в отношении целого (С) и частей (А и В), что наглядно показывается в схеме:


С

А B

Моделирование в виде схемы целесообразно использовать при решении задач, в которых даны отношения значений величин («больше», «меньше», «столько же»). Задачи, связанные с движением, целесообразнее моделировать с помощью чертежа, диаграммы или графика [2].

Наряду со схематическим моделированием, начиная с 1 класса, используется и знаковое моделирование – это краткая запись задачи [18]. В краткой записи фиксируются величины, числа – данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: «было», «положили», «стало» и т. п. Краткую запись задачи можно выполнять в таблице и без нее.

При табличной форме требуется выделение и название величины. Расположение числовых данных помогает установлению связей между величинами: на одной строке, одно под другим. Искомое число обозначается вопросительным знаком [2].

Закреплению навыков моделирования текстовых задач помогают упражнения творческого характера. К ним относятся моделирование задач повышенной трудности, задач с недостающими и лишними данными, а так же упражнения в составлении и преобразовании задач по данным моделям [15].

1. Работа с незаконченными моделями:

а) дополнение числовых данных и вопроса предложенной модели;

б) дополнение какой-либо части модели.

2.Исправление специально допущенных ошибок в модели.

3.Составление условия задачи по данной модели.

4.Составление задач по аналогии.

Итак, в данной работе, для использования визуальных моделей при решении задач, применяется методика, содержащая три вышеуказанных этапа. Первый этап данной методики предполагает выделение понятий, использующихся для составления модели, и отношений между ними. Его цель состоит в раскрытии смысла этих понятий и формирования навыков работы с этими понятиями. Второй этап предполагает применение выделенных понятий для построения визуальных моделей, обучения правилам этого построения. Результатом данного этапа является умения составлять модель по задаче и интерпретировать эту модель, т. е. опираясь на визуальную модель переходить к математической модели и формулировать из условий эквивалентные утверждения, удобные для дальнейшей работы. Третий этап предполагает закрепление полученных навыков. Роль и значение указанных этапов может варьироваться в зависимости от конкретного метода визуализации. Например, первый этап может отсутствовать в случае владения учащимися средствами моделирования. Важно только, чтобы всякий раз были в наличии результаты каждого этапа в указанной последовательности.

§ 2. Методика обучения решению математических задач с использованием визуальных моделей

2.1. Методика построения визуальных моделей при обучении решению текстовых задач

В этом параграфе рассмотрим методы визуализации тестовых задач. В качестве методов визуализации рассмотрим использование линейных и двумерных диаграмм, а так же применение графиков линейной функции. Данные методы визуализации основаны на геометрических свойствах фигур (прямоугольников, треугольников, отрезков) и свойствах операций над ними. При решении задач с использованием данного вида визуализации выделяют следующие три этапа: построение визуальной модели, то есть перевод задачи на геометрический язык, решение получившейся геометрической задачи, перевод задачи с геометрического языка на естественный. Для обучения построению и работы с визуальными моделями используется указанная выше трехэтапная методика, роль и значение этапов которой варьируется в зависимости от сложности конкретного способа визуализации. Задачи в этом параграфе выделяются не по содержанию сюжета, а по соответствию тому методу визуализации, который к ним применим.

Линейные диаграммы используются преимущественно в тех задачах, в которых искомое находится в зависимости от данных, выразимой с помощью арифметических операций сложения (вычитания) и умножения (деления). В курсе алгебры представлены два основных вида задач (текстовых), решаемых с помощью линейных диаграмм: 1) задачи, в которых даны отношения значений величин и отражена одна ситуация в данный момент времени; 2) задачи, в которых даны отношения значений величин и отражены две ситуации – первоначальная и конечная. При решении задач первого вида линейная диаграмма выступает в качестве статической геометрической модели, то есть в процессе решения задачи она не изменяется и выполняет только иллюстративную функцию. Наибольший интерес с точки зрения использования линейных диаграмм в курсе алгебры представляют задачи второго вида. Построение линейной диаграммы при решении этих задач проходит в два приема: в начале строится диаграмма, отражающая первоначальное (конечное) состояние объектов, а затем согласно условию она изменяется таким образом, чтобы вновь полученное изображение (диаграмма) отражала конечное (первоначальное) состояние объектов. Изменение построенной диаграммы осуществляется путем действий над отрезками (сложения и умножения на число) [9].

Так как роль первого этапа методики обучения работе с визуальными моделями состоит в том, чтобы выделить основные понятия и объекты, участвующие в построении модели, то, в данном случае необходимость в нем отпадает. Связанно это с тем, что для построения и работы с линейными диаграммами используются отрезки и операции с ними, что изучается на протяжении всего школьного курса математики.

Второй и третий этапы не нужно явно отделять друг от друга: обучение моделированию происходит непосредственно в процессе решения задач, но в начале нужно провести методическую работу для формирования умений построения визуальной модели. Эта работа заключается в акцентировании внимания на существенных сторонах в построении визуальной модели, которые отражают суть задачи. А именно, рассмотреть случаи, в которых длина отрезка может выбираться произвольно, и случаи когда длина отрезка зависит от каких-то условий. Необходимо также провести различие между задачами первого и второго вида. Для задач второго вида показать, что мы идем от одного состояния к другому, при этом посредством арифметических операций над отрезками, соответствующих условию, получаем из первоначальной диаграммы другую, иллюстрирующую данное состояние. Приведем пример.

Задача 1. На одном овощехранилище было втрое больше картофеля, чем на другом. С первого вывезли 450 кг картофеля, а на второе привезли 120 кг картофеля, после чего на обоих овощехранилищах картофеля стало поровну. Сколько килограмм картофеля было на каждом овощехранилище первоначально?

Как было отмечено выше решение задачи при использовании диаграмм, осуществляется в три этапа.

Первый этап. После прочтения задачи учащиеся отвечают на вопросы:

1. Сколько ситуаций рассматривается в задаче? (Две: первоначальная и конечная).

2. С какой ситуации следует начать построение линейной диаграммы? (Можно начать с первой ситуации и перейти от нее ко второй, а можно сначала построить диаграмму конечной ситуации и перейти от нее к первоначальной. Рассмотрим первый вариант).

3. Что будет представлять собой первоначальная диаграмма? (Два отрезка, один из которых втрое больше другого). После этого ученики строят первоначальную диаграмму, далее рассуждения продолжаются.

4. Как перейти на диаграмме от первой ситуации ко второй? (Надо из первого отрезка вычесть второй условно изображающий 450 кг, а ко второму прибавить отрезок изображающий 120 кг).

5.

Произвольно ли берутся отрезки изображающие 120 и 450 килограмм? (Нет, следует учитывать, что вновь полученные отрезки должны быть равны, так как на обоих хранилищах картофеля стало поровну).

Выполнив действия с отрезками, учащиеся получают диаграмму конечной ситуации. Первый этап работы над задачей заканчивается обозначением отрезков и оформлением записей на чертеже (рис.1).