Смекни!
smekni.com

Обобщения при обучении решению математических задач (стр. 6 из 12)

3). Иногда решение задачи оказывается проще, если сформулировать и решить задачу сначала более общую, а затем с ее помощью решить данную задачу. Совет: «Попробуйте сформулировать и решить более общую задачу».

Эвристико-организационные советы для решения задачи можно оформить в виде таблицы. [20] [Приложение 9]

Таким образом, с помощью индуктивных обобщений при решении математических задач можно вывести новые методы решения задач, перейти от одних методов решения задач к более общим. Так же индуктивные обобщения подходов к решению задачи их систематизация помогаютв создании системы советов, полезных в процессе отыскания решения задачи.

2.2 Обобщение как метод решения математических задач

Обобщение как метод решения может осуществляться:

1. Решение задачи «по индукции»;

2. Решение задачи в «общем» виде.

2.2.1 Обобщения «по индукции»

Метод решения задачи «по индукции» основан на полной или теоретической индукции.

Обобщение как метод решения осуществляется по следующей схеме:

1. Выделить частный случай задачи, для которого задача решается легко и решить задачу для этого частного случая;

2. Рассмотреть более общий, но все же частный случай, содержащий первый;

3. Рассмотреть общий случай.

Часто решение задач «по индукции» включает в себя только первый и третий пункты из вышепредложеной схемы.

Пример 19.В четырехугольнике две стороны AD и BC не параллельны. Что больше: полусумма этих сторон или отрезок (MN), соединяющий середины двух других сторон четырехугольника (рис. 3а)? [3]

Рис. 3

1) Выделим для начала частный случай, который можно легко решить. В данном случае будет удобно, если одну из сторон четырехугольника стянуть в точку (рис. 3б). Тогда пусть BC стягивается в точку В. В таком положении точка N совпадает с серединой К отрезка BD, и MN становится средней линией MK треугольника ABD. Таким образом исходная задача сводится к следующей: что больше, половина стороны AD треугольника ABD или отрезок MK, соединяющий середины двух других сторон.

По определению средней линии треугольника ответ очевиден: MK=

AD

2) Теперь рассмотрим общий случай (Рис. 3в). Задача будет легко решена, если его свести к уже решенному частному случаю. Пусть K – середина диагонали BDчетырехугольника ABCD. Из рассмотренного частного случая имеем: в треугольнике ABDMK=

AD и МК|| AD, в треугольнике BCDKN=
BC и KN||BC.

Так как по условию AD не параллельно BC, то M, N, K не лежат на одной прямой. Тогда по правилу треугольника, в треугольнике MKN видно, что MN<MK+KN =
(AD+BC).

Следовательно, мы доказали, что полусумма сторон AD и BC четырехугольника ABCDбольше чем отрезок (MN), соединяющий середины двух других сторон.

Каждый раз при решении общей задачи используется результат решения предыдущей частной задачи. Такой частный случай Д. Пойа называет ведущим[30].

Рассмотрим использование различных частных случаев при решении задач.

Пример 20.Дана окружность радиуса R. Из точки A, лежащей вне окружности и отстоящей от центра O на расстоянии а, проведена секущая. Точки B, C ее пересечения с окружностью соеденены с центром О. Пусть

BOA и
COAобозначены соответственно через
и
. Найти
tg
*
tg
(рис. 4а).

б
Рис. 4


Так как требуется найти величину tg

* tg
в зависимости от данных, то есть а и R, то ответ должен быть одним и тем же при любом выборе секущей. Тогда верно, что этот же ответ должен получиться и при случае, когда секущая вырождается в касательную (рис. 4б). В данной задаче в качестве частного случая следует рассмотреть случай, когда проведена не секущая, а касательная.

Обобщение «по индукции» удачно подходит для вывода площадей поверхностей многогранников.

Пример 21.Вывести формулу боковой поверхности правильной n‑угольной призмы.

Вначале можно вывести формулу площади боковой поверхности прямой правильной треугольной призмы.

Далее обобщаем задачу до вывода формулы площади боковой поверхности прямой правильной n‑угольной призмы.

Иногда при решении задачи необходимо рассмотреть несколько вариантов, исчерпывающих все частные случаи, о чем прямо в задаче не сказано. Тогда метод будет иметь несколько другую схему рассуждений:

1) выделить все варианты частных случаев ситуации, описанной в задаче или создавшейся при ее решении;

2) решить задачу для каждого варианта;

3) объединить решения всех вариантов.

Часто этот метод называют методом исчерпывающих проб. Применение метода возможно при конечном числе вариантов.

Пример 22. Найти все четырехзначные числа, удовлетворяющие условиям: сумма цифр равна 11, само число делится на 11.

Обозначим искомое число: abcd=103*a+102*b+10*c+d.

Запишем условия задачи в систему:

Второе уравнение системы выражает делимость искомого числа на 11. Преобразовав систему, получим уравнение: 2*(a+c)=11*(k+1), причем k

, так как разность в левой части второго уравнения не может быть меньше -11 и больше 11 (сумма цифр равна 11).

Тогда возможны три случая:

1) k=-1, тогда a+c=0, тогда a=0, что противоречит условию (число четырехзначное).

2) k=0, тогда 2*(a+c)=11, чего не может быть.

3) k=1, тогда a+c=11, b=0, d=0 и все значения a и с можно записать в таблицу 2:

Табл. 2

a 2 3 4 5 6 7 8 9
c 9 8 7 6 5 4 3 2

Число вариантов конечно, снова решив задачу для каждого варианта, находим, что решением задачи будут числа 2090, 3080, 4050, 5060, 6050, 7040, 8030,9020.

Таким образом, чтобы применять обобщение как метод решения задачи «по индукции», нужно уметь выделять частные в случаи задаче.

2.2.2 Решение задач «в общем виде»

Необходимо обучать школьников решению задач «в общем» виде, так как решение задачи «в общем» виде часто может оказаться доступнее, легче, рациональнее, чем решение конкретной задачи. Так же обобщенная формулировка задачи помогает усвоению математической сущности конкретных задач и позволяет обнаружить способ решения исходной задачи. К более общей задаче могут быть применимы методы, которые не применимы к исходной задаче.

Обобщенная задача иногда подсказывает новый способ решения.

Пример 23.Вычислить |a| – 2*|a| + 9*|a|2+35*|a|5-21*|a|3-5*|a|4 при a равных -2; 1.

Так как модуль раскрывается в зависимости от того, какой знак имеет подмодульное выражение, то обобщением задачи может быть следующая задача: Найти значение выражения F(a), если a<0; a >=0.

Обобщенная задача помогает прояснить суть конкретных задач. При a<0 учащиеся поймут суть раскрытия модуля с отрицательным знаком, при a >=0 с положительным.

Иногда задачу удобнее решать сформулировав ее в общем виде.

Пример 24.Даны правильный октаэдр и прямая занимают в пространстве фиксированное положение. Найти плоскость, проходящую через данную прямую и делящую октаэдр на две равновеликие части [30].