Смекни!
smekni.com

Автоматическое управление плотностью бумажной массы (стр. 2 из 4)

Формирование бумажного листа (отлив). Формирование, или отлив, бумажного листа представляет собой процесс объединения волокон в листовую форму с созданием определенной объемной капиллярно-пористой структуры. Этот процесс осуществляется на сеточной части бумагоделательной машины постепенным и последовательным удалением воды из бумажной массы (обезвоживанием).

Режим обезвоживания, начинаемый в начале сеточного стола и заканчиваемый сушкой бумаги в сушильной части, на всех этапах технологического процесса оказывает существенное влияние на качество бумаги и производительность машины. Слой суспензии, транспортируемый бесконечной сеткой, последовательно проходит над регистровыми валиками или гидропланками, где постепенно обезвоживается. По мере удаления воды слой суспензии сгущается, образуется определенная структура бумажного полотна в виде слоя волокнистой массы на сетке концентрацией 2-4%. Обезвоживание такого слоя с помощью вакуума, создаваемого регистровыми валиками или гидропланками, затрудняется. Поэтому дальнейшее обезвоживание проводят с помощью отсасывающих ящиков, в которых создается вакуум с помощью вакуум-насосов, причем от первого к последнему ящику вакуум повышается. Разряжение в ящиках устанавливают в зависимости от вида вырабатываемой бумаги, оно находится в пределах 2-3 кПа. После отсасывающих ящиков сухость бумажного полотна составляет 8-10%. Затем полотно бумаги обезвоживается в конце сеточного стола на гаучвале под действием вакуума в отсасывающей камере.

1.4 Прессование, сушка, отделка бумаги

Прессование. После обезвоживания в сеточной части бумажное полотно поступает в прессовую, состоящую обычно из нескольких прессов, на которых оно последовательно обезвоживается до сухости 30-42%. Во время прессования бумажное полотно не только обезвоживается, но и уплотняется. При этом увеличиваются площадь контакта и силы сцепления между волокнами. Кроме того, изменяются свойства бумаги: растет объемная масса, снижаются пористость, воздухопроницаемость, впитывающая способность, увеличивается механическая прочность на разрыв и продавливание, повышается прозрачность и т. д.

Сушка. В сушильной части бумагоделательной машины бумажное полотно обезвоживается до конечной сухости. В процессе сушки удаляется 1,5-2,5 кг воды на 1 кг бумаги, что примерно в 50-100 раз меньше, чем на сеточной и прессовой частях машины. При сушке одновременно происходит дальнейшее уплотнение и сближение волокон. В результате повышается механическая прочность и гладкость бумаги. От режима сушки зависят объемная масса, впитывающая способность, воздухопроницаемость, прозрачность, усадка, влагопрочность, степень проклейки и окраска бумаги. Сухость бумажного полотна после нахождения в сушильной части составляет 92-95%, а температура 70-900С. Для обеспечения высококачественного каландрирования и хорошей намотки полотна в конце сушильной части устанавливают холодильные цилиндры, охлаждаясь на которых, бумажное полотно впитывает влагу и увлажняются на 1-2%.

Отделка. После сушки бумажное полотно с целью уплотнения и повышения гладкости проходит через машинный каландр, состоящий из расположенных друг над другом 2-8 валов. Полотно, огибая поочередно валы каландра, проходит между ними при возрастающем давлении. Пройдя каландр, бумажное полотно непрерывно наматывается на тамбурные валы в рулон диаметром до 2500 мм. Перезаправка с одного тамбурного вала на другой осуществляется при помощи специальных механизмов и устройств. Пройдя бумагоделательную машину бумага поступает на резательный станок и далее к упаковочной машине.

Основные параметры, характеризующие бумагоделательную машину - ширина вырабатываемой бумаги (в мм) и скорость (в м/мин). Эти два параметра, а также масса 1 м2 полотна определяют производительность машины (т/ч, т/сут и тыс.т/год).

1.5 Управление плотностью бумажной массы

При производстве бумаги очень важно поддерживать постоянную плотность исходной массы перед тем, как она поступает на укладку, сушку и протяжку. На рисунке приведена схема управления плотностью бумажной массы. Плотность определяется количеством добавляемой в смеситель воды.

Рисунок 2.1 – Схема управления плотностью бумажной массы

Далее рассмотрим структурную схему данной системы:

Рисунок 2.2 – Структурная схема управления плотностью бумажной массы

На этой схеме:

Gc(s)-регулятор.

Передаточная функция регулятора:

Предположим, что k=10, тогда:

G(s)-исполнительный механизм.

Передаточная функция исполнительного механизма:

Предположим, что H(s)=1;


2. Разработка модели системы в MatLab

Проанализировав функциональную схему системы, перейдем к структурной, модель которой построим в пакете Matlab:

Рисунок 3.1 – Структурная схема

Рисунок 3.2 – Переходной процесс


3. Определение передаточной функции разомкнутой и замкнутой системы

Передаточная функция разомкнутой системы равна:

.

Передаточную функцию замкнутой системы можно получить при помощи передаточной функции разомкнутой системы:

Запишем характеристический полином системы (он равен знаменателю передаточной функции замкнутой системы):

D(s)=32·s2+12s+11.


4. Описание динамических характеристик звена системы

Передаточная функция элемента имеет вид:

.

4.1 Временные характеристики

4.1.1 Переходная характеристика

Переходная характеристика звена – это реакция звена на единичный скачок. Она находится по формуле:

,

где L- – оператор обратного преобразования Лапласа. Тогда

Рисунок 5.1 - Переходная характеристика элемента

4.1.2 Импульсная (весовая) характеристика

Импульсная (весовая) характеристика – это реакция звена на

d-функцию Дирака.

,

Рисунок5.2 - Импульсная характеристика элемента

4.2 Частотные характеристики

Представим передаточную функцию звена комплексной частотной передаточной функцией [3], заменив s на jw:

Образ W3(jw) на комплексной плоскости – это амплитудно-фазовая частотная характеристика (АФЧХ) звена.


Рисунок 5.3 - АФЧХ элемента

Строим ЛАЧХ.

20 lgK=20 lg10 =20;

Сопрягающая частота:

Рисунок 5.3 - График логарифмической амплитудно-частотной характеристики (ЛАЧХ)

5. Анализ устойчивости системы

Понятие устойчивости системы регулирования связано со способностью возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния.

Для устойчивости линейной системы необходимо и достаточно, чтобы все корни лежали слева от мнимой оси плоскости корней. Если хотя бы один корень окажется справа от мнимой оси, то система будет неустойчивой. Таким образом, мнимая ось представляет собой граничную линию в плоскости корней, за которую не должны переходить корни характеристического уравнения. Вся левая полуплоскость представляет собой при этом область устойчивости.

Общее условие устойчивости говорит о том, что линейная непрерывная система будет устойчива, если вещественные части корней характеристического уравнения замкнутой системы будут отрицательны. Чтобы упростить задачу анализа устойчивости, в ТАУ используются критерии, которые позволяют судить об устойчивости системы, не рассчитывая корней характеристического уравнения.

5.1 Проверка устойчивости критерием Гурвица

Согласно критерию Гурвица, чтобы все корни характеристического полинома имели отрицательные вещественные части (т.е. система была устойчива), необходимо и достаточно, чтобы все определители Гурвица были больше нуля при положительном коэффициенте при старшей степени.

Рассчитаем устойчивость нашей системы критерием Гурвица :

При анализе по критерию Гурвица нам необходимо знать характеристический полином нашей системы.

Характеристический полином:


D(s) =

.

Для системы второго порядка: чтобы система была устойчива, необходимо и достаточно чтобы коефициенты характеристического уравнения были больше 0.

Все коефициенты оказались больше нуля, значит, наша система устойчива.