Смекни!
smekni.com

Методы анализа степени очистки конденсата на ТЭЦ (стр. 2 из 4)

Схемы конденсатных станций находятся на рабочих местах операторов по сбору и очистке конденсата.

Обескремнивание воды. Некоторые обескремнивание обрабатываемой воды имеет место в процессе её известкования, при этом содержание кремниевой кислоты в ней снижается на 30 – 40% от начального. При коагуляции воды солями железа и алюмината натрия также осуществляется частичное её обескремнивание. В коакуляционно-обескремнивающих установках удается снизить содержание силикат иона в обрабатываемой воде до 3–5 мг/л.

Для глубокого обескремнивания воды в хим. водоочистках промышленных ТЭЦ высокого давления в настоящее время получил применение магнезиальный способ обескремнивания с использованием в качестве реагентов каустического магнезита и обожженного доломита. Этот способ обескремнивания позволяет снизить содержание силикатиона в обрабатываемой воде до 0,4 – 1,3 мг/л. Что позволяет во многих случаях значительно повысить величину добавки хим. очищенной води для котлов высокого давления.

Добавочной водой называют воду используемую для восполнения потерь конденсата при питании котлов.

Питательной водой называет воду, подаваемую насосами в котлы и другие парогенераторы для воспаления испарившейся воды.

Котловой водой называют воду, находящуюся в котлах и подвергающуюся в процессе получения пара испарения. Котловую воду испарителей и парообразователей обычно называют концентратом.

Циркуляционной или охлаждающей называют воду, поступающую в конденсаторы паровых турбин для конденсации образовавшегося пара.

Физико-химические методы анализа

Колориметрический метод анализа основан на сравнении интенсивности окраски исследуемого раствора с окраской стандартного раствора, концентрация которого известна. Этот метод применяется для определения преимущественно микро- и полумикроколичеств вещества. Если луч монохроматического однородного света падает на кювету с раствором, то одна часть его отражается от поверхности раствора, другая поглощается раствором, а третья проходит через раствор. Для различных моментов воздействия падающего луча света применяют следующее обозначение:

I0 – интенсивность падающего света;

Ir – интенсивность отраженного света;

Iа – интенсивность поглощенного света;

It– интенсивность света, прошедшего через слой раствора.

І0 = Ir+ Iа + It.

В большинстве случаевIr- величина постоянная; по сравнения с Iа и It она очень мала. Ею можна пренебречь. Тогда равенство:

І0 = Iа + It.

интенсивность поглощенного светаIа зависит от наличия в растворе молекул или ионов окрашенного вещества, которые поглощают свет значительно сильнее. чем сам растворитель. Следовательно, световой поток, проходя через раствор, теряет часть интенсивности – и тем большую часть, чем больше он встречает на своем пути молекул или ионов окрашенного вещества.

Для окрашенных растворов между степенью поглощения монохроматического света, концентрацией окрашенного вещества и толщиной слоя существует зависимость, называемая Ламберта – Беера. По этому закону поглощение монохроматического света, прошедшего через слой окрашенной жидкости, пропорционально концентрации с светопоглащающего вещества в растворе и толщине hслоя раствора:

Величина характеризует степень ослабления света при прохождении его через раствор. Это отношениеназывается погашением, или оптической плотностью раствора.

Величина k (коэффициент погашения) зависит от химической природы и физического состояния светопоглащающего вещества, а также от длины волны или частоты колебания монохроматического пучка света. Если концентрация раствора выражена в моль/л, толщина слоя в см, то k называется мольным коэффициентом погашения. Он представляет собой оптическую плотность 1 мл раствора толщиной 1 см.

Так оба раствора освещены одним и тем же световым потоком и находящееся в них окрашенное вещество одно и то же, то значение I0 и k в обоих уравнениях одинаковы. Когда оба слоя будут окрашены одинаково интенсивно, т.е. системы будут оптически уравнены, то при соблюдении закона Ламберта – Беера It = I´t. Отсюда

На основании равенства вычисляют концентрацию испытуемого раствора.

Колориметрический методы и применяемые приборы

В колориметрии пользуются следующими методами:

1. подбор стандартных растворов разных концентраций – метод стандартных серий,

2. сравнивание окрасок путём изменения толщины слоя,

3. фотоколориметрия.

Метод стандартных серий. Окраску испытуемого раствора сравнивают с окрасками серии стандартных растворов. Для приготовления такой серии берут десять одинаковых стеклянных цилиндров или пробирок, удобно пользоваться градуированными пробирками. Форма, размер всех сосудов, а также и цвет их стекла совершенно одинаковы.

Пробирки (цилиндры) заполняют стандартным раствором: в первой – объём столбца 0,5 мл, во второй -1 мл, в третьей – 1,5 мл и т.д.; в последней – 5 мл. Растворы разбавляют водой так, чтобы уровень жидкости в каждой пробирке был одинаковым. Вливают в них равные объёмы реактива, окрашивающего раствор с определяемым ионом. Пробирки (цилиндры) плотно закрывают пробкой и раствор тщательно перемешивают.

Окраску испытуемого раствора сравнивают с окраской стандартных растворов на белом фоне (бумаге или пластинке). Растворы должны быть хорошо и равномерно освещены рассеянным светом. Если интенсивность окраски испытуемого раствора окажется средней между двумя стандартными, то это значит, что в анализируемом объеме раствора находится количество растворенного вещества, близкое к среднему значению концентраций стандартных растворов.

Для этого метода необходимо иметь коллекцию стандартных растворов. Поэтому применение его экономически целесообразно только при массовом определении одного и того же вещества. Метод имеет тот недостаток, что по истечении некоторого времени многие растворы изменяют интенсивность окраски. Заготовленные стандартные растворы могут служить относительно короткое время.

Уравнивание окрасок. Метод уравнивания окрасок испытуемого раствора со стандартным производится путем рассматриваемых толщин слоев окрашенных жидкостей. Применяются специальные приборы – колориметры. Метод заключается в следующем. В одну кювету колориметра наливают раствор испытуемого вещества, а в другую – стандартный раствор того же вещества, при чем уровни раствора в обеих кюветах одинаковые, краски растворов оказываются неодинаковой интенсивности. Чтобы интенсивность окрасок в обеих кюветах при наблюдении через толщину слоёв жидкостей была одинаковой, заменяют уровни (высоты) жидкостей таким образом, чтобы интенсивности окрасок уравновесились.

Приборы, служащие для определения концентраций исследуемых растворов, называются колориметрами. Различают визуальные и фотоэлектрические колориметры. При визуальных калориметрических определениях измерение интенсивности окраски или цвета производится непосредственным наблюдением. Фотоэлектрические методы основаны на использовании фотоэлементов – фотоколориметров.

В зависимости от интенсивности падающего пучка света в фотоколориметре возникает электрический ток. Сила тока, вызванная воздействием света, измеряется гальванометром. Отклонение его стрелки показывает интенсивность концентрации раствора.

Силикаты. Кремний встречается в водах в виде окиси, в той или иной степени гидратированной, в виде алюмосиликатов, а также в ионизированной форме, в виде ортосиликат-ионов, преобладание ионизированной или неионизированной формы определяется величиной рН.

Содержание растворенных силикатов в подземных и поверхностных водах зависит от геологических условий и от присутствия некоторых организмов. Количество нерастворенных силикатов в поверхностных водах обусловлено атмосферными осадками, смывами и спуском сточных вод.

Большое значение имеет определение растворенной ортокремневой кислоты и всех растворенных силикатов, для определения их в питьевых, поверхностных и некоторых сточных водах предлагается калориметрический метод с молибдатом. Все растворенные силикаты можно определить колориметрически, реакцией с молибдатом после гидролиза в щелочной среде, или весовым методом после превращения кремневой кислоты в нерастворимую форму.

Колориметрическим методом пользуются при анализе прозрачных и слегка мутных проб; весовой метод применяется при анализе сточных вод, особенно в тех случаях, когда надо определить раздельно растворенную и нерастворенную кремневую кислоту.

Пробы не консервируют; отбор проб производится в полиэтиленовые бутыли или в бутыли из химически устойчивого стекла.

Результаты определения выражают в миллиграммах SiO2 в 1 л воды.

Кремневая кислота и ее соли – очень слабая кислота. При нагревании она разлагается по уравнению реакции:

H2SiO3 = SiO2 +H2O

Соли кремневой кислоты называются силикатами. В воде растворяются силикаты натрия Na2SiO3 и калия K2SiO3:

Na2 SiO3 +H2O= SiO2 +2 NaOH.

Кремний образует два оксида:

оксид кремния (II) SiOи

оксид кремния (IV) SiO2

По химическим свойствам оксид кремния (IV) является кислотным остатком. Непосредственно с водой он не реагирует, поэтому кремневую кислоту можно получить только косвенным путем, действуя на соли кремневой кислоты кислотами HClH2SO4, где сначала образуется в растворе, а затем выпадает в осадок.

Калориметрический метод на КФК-3 основан на том, что при определенной кислотности ион SiO2взаимодействует с молибдатом аммония ((NH4)2MoO4 5%) и образует комплексное соединение окрашенное в желтый цвет. При восстановлении этого соединения хлористым оловом (1% SnCl2), образуется соединение окрашенное в синий цвет.