Смекни!
smekni.com

Особенности извлечения ванадия из отработанных катализаторов (стр. 2 из 4)

Установлено, что извлечение хлоридов алюминия, молибдена и ванадия происходит с высоким выходом ~90 %. Выход зависит от условий проведения процесса; он несколько повышается при использовании избытка хлора. Обработке подвергают 1 кг отработанного катализатора на носителе — активного оксида алюминия; в состав катализатора входят соединения V, Мо, Со и Ni. Для удаления углеводородов и воды сырье сначала нагревают в токе азота при 400 °С в течение 2 ч. Обработку проводят в трубчатом реакторе длиной 600 мм и диаметром 140 мм, вращающемся вокруг горизонтальной оси; реактор имеет наружный обогрев, скорость подачи азота составляет 20 л/ч. Через 2 ч реактор охлаждают, выгружают 825 г катализатора, из которого удалены летучие продукты, большая часть которых улавливается путем конденсации. В состав летучих продуктов входит ~1/3 воды и 2/3 смеси углеводородов После списанной обработки катализатор имеет следующий состав, %: С 21; S 8,4; V 9,4; Мо 5,6; Ni 2,4; Со 1,7; Si 0,14; Al 27.

Этот катализатор хлорируют в вертикальном никелевом трубчатом реакторе высотой 500 мм и диаметром 80 мм; в результате наружного обогрева температура составляет 500—600 °С; время реакции 10 ч. Хлор подается с нижнего конца реактора со скоростью 80 л/ч. В результате получают 245 г твердого остатка, имеющего следующий состав, %; С 36; S 4,8; Со 5,6; Ni 8,1; Al 2,8; Si 0,6.

В нем содержатся лишь следы Мо и V, поскольку оба этих металла практически полностью удаляются в виде летучих хлоридов. Металлы, присутствующие в остатке, после растворения выделяют из водного раствора известными методами, например в виде гидроксидов или карбонатов.

Газовую фазу со стадии хлорирования подают в нижнюю часть колонны, заполненной гранулами хлорида натрия размером 1—2 см; температура 350 °С. Из нижней части этой колонны стекает ~ 1 кг продукта, имеющего состав AlCl3-NaCl. Остальные компоненты газовой смеси, в частности, хлориды молибдена и ванадия, не задерживаются в этой колонне и выводятся из ее верхней части.

Отходящие газы подаются в нижнюю часть вертикальной трубки высотой 40 см и диаметром 60 мм, заполненной кристаллическим хлоридом калия. Его получают путем кристаллизации из водного раствора, размеры гранул составляют 1—2 см. Здесь при температуре 400 "С хлорид молибдена сорбируется на поверхности гранул КС1. Выходящие гагы далее проходят через конденсатор, в котором при температуре 60 °С выделяется хлорид ванадия. Газы из конденсатора направляют в абсорберы для выделения хлоридов кремния и серы.

Выход молибдена, выделенного в виде хлорида, превысил 90 % от количества молибдена, содержащегося в отработанном катализаторе. Также ~90 % составил выход ванадия.

2.2 Ванадиевый катализатор из отходов процесса производства адипиновой кислоты

В процессе окисления циклогексанола и (или) циклогексанона азотной кислотой образуются значительные количества побочных продуктов, таких как янтарная и глутаровая кислоты, находящиеся в смеси с основным продуктом — адипиновой кислотой. Разделение этих продуктов в промышленности проводится с помощью хорошо известных технологических схем, включающих стадии кристаллизации, концентрирования и повторной кристаллизации. Однако получаемый в результате такой переработки маточный раствор, содержащий янтарную, глутаровую и небольшие количества адипиновой кислоты, далее разделить на индивидуальные компоненты не удается.

Рис. 2. Схема процесса обработки маточного раствора в производстве адипиновой кислоты для выделения металлических катализаторов и органических кислот.

В результате удаления адипиновой кислоты путем кристаллизации и испарения воды и азотной кислоты концентрация металлсодержащего катализатора в упомянутом маточном растворе значительно повышается. Таким образом, сброс этого раствора в виде отхода существенно снижает экономичность всего процесса, поскольку при этом теряются не только органические кислоты, но и значительные количества компонентов катализатора.

Способ включает обработку водного азотнокислого раствора спиртом для этерификации содержащихся в нем кислот с последующей обработкой растворителем, не смешивающимся с водой, разделение водной и органической фазы, выделение азотной кислоты и компонентов катализатора из водной фазы и выделение производных кислот из органической фазы.

Схема процесса представлена на рис. 2. Процесс экстракции этерифицированного продукта проводится непрерывно. Первый и второй экстракционные аппараты представляют собой резервуары с мешалкой. Третий экстрактор выполнен в виде насадочной колонны; подвижной здесь является водная фаза. Время контакта составляет 15—30 мин. При обработке раствора спиртом время контакта ~1 ч. Как экстракция, так и обработка спиртом обычно проводятся при повышенной температуре, >55 °С.

Маточный раствор по линии 1 подают в резервуар 3, куда по линии 2 поступает также спирт. Желательно, чтобы раствор и спирт подавались в равных объемах. Полученный раствор непрерывно подается через последовательно соединенные экстракторы, отстойники и резервуары. Одновременно соответствующий объем бензола или другого растворителя, не смешивающегося с водой, по линии 18 подается с противоположного конца системы и движется противотоком обрабатываемому раствору.

В первом резервуаре происходит этерификация кислот, присутствующих в маточном растворе, при взаимодействии со спиртом и смесь по линии 4 поступает в первый экстрактор 5, где взаимодействует с экстрагентом, поступающим по линии 21 из второго отстойника 13. Далее смесь направляют в первый отстойник 7, где происходит расслаивание, и экстракт-сырец непрерывно удаляется по линии 22.

Водная фаза из отстойника 7 по линии 8 поступает во второй резервуар 9, затем по линии 10 во второй экстрактор 11, где она смешивается с экстрагентом, поступающим из третьего экстрактора 17 по линии 20. Затем смесь по линии 12 подают во второй отстойник 13 и после расслаивания экстракт по линии 21 направляют в первый экстрактор 5, а водную фазу по линии 14 подают в третий резервуар 15 и далее по линии 16 в третий экстрактор. Свежий растворитель, не смешивающийся с водой, например бензол, вводят в третий экстрактор по линии 18. После обработки он по линии 20 поступает во второй экстрактор П. Водный раствор выводят по линии 19 для проведения дальнейшей необходимой обработки.

При осуществлении описанного непрерывного метода по линии 22 непрерывно отводится экстракт-сырец, содержащий эфиры органических кислот, а по линии 19 водный раствор, содержащий избыток спирта, воду, азотную кислоту и компоненты катализатора. Оба выделяемых раствора подвергаются дальнейшей переработке для выделения содержащихся в них компонентов.

Этот процесс обладает рядом преимуществ по сравнению с известными процессами выделения. В частности, он не требует проведения таких сложных технологических стадий как удаление азотной кислоты и воды путем упаривания, дистилляция высококипящих двухосновных кислот, добавление нелетучих кислот или других неорганических материалов, накапливающихся в системе, дорогостоящие процессы кристаллизации и фильтрования. В результате получают водный и органический растворы, не содержащие примесей.

Преимуществами описанного способа перед известными являются его простота и экономичность. Он позволяет получать дикарбоновые кислоты в виде эфиров, которые легко могут быть выделены в индивидуальном виде и далее путем гидролиза превращены в кислоты. Металлсодержащие компоненты катализатора выделяются в виде концентрированного азотнокислого раствора и могут быть непосредственно направлены для повторного использования на стадии окисления циклогексанола и (или) циклогексанона азотной кислотой.

Побочные продукты или сточные воды процесса производства адипиновой кислоты, содержащие также глутаровую, янтарную и азотную кислоты и компоненты медного и ванадиевого катализаторов, обрабатывают спиртом для этерификации двухосновных кислот. При использовании, например, н-бутанола образующиеся эфиры практически не смешиваются с водным раствором и отделяются от водного слоя, в котором содержатся компоненты катализатора. Водный раствор может быть возвращен на стадию производства адипиновой кислоты каталитическим окислением.


2.3 Ресурсосберегающая технология получения ванадия из отработанных катализаторов сернокислотного производства

Ванадий представляет собой широко распространенный элемент, имеющий важное народнохозяйственное значение и определяющий качество современной металлопродукции. Большие промышленные запасы ванадийсодержаших руд (Россия, ЮАР) и относительно невысокая стоимость ванадия дают право считать его наиболее предпочтительным металлом при выплавке экономнолегированных сталей. В наибольшей степени ванадий используют в металлургии в качестве легирующей добавки при производстве высокопрочных конструкционных и быстрорежущих сталей. Важными сферами его применения являются также авиакосмическая и химическая промышленности, в частности, производство сернокислотных катализаторов.

В странах СНГ основным природным сырьем для ванадиевой продукции являются титаномагнетитовые руды Качканарского месторождения (Россия), где концентрация оксида ванадия (V) составляет 0,14-0,17%.

Техногенными загрязнителями окружающей среды соединениями ванадия являются предприятия металлургической, химической промышленности и энергетика. На долю металлургии и химии приходятся твердые отходы: шлаки после выплавки ванадиевых ферросплавов, легирования стали ванадием и отработанные катализаторы химической промышленности. При сжигании органического топлива на тепловых электростанциях, соединения ванадия и другие вредные вещества выбрасываются в окружающую среду в газообразном, жидком и твердом виде. Соединения ванадия токсичны. Они могут поражать органы дыхания, пищеварения, систему кровообращения и нервную систему, а также вызывать воспалительные и аллергические заболевания кожи. Такое воздействие на человека связано с физико-химическими свойствами ванадия и его соединений.