Смекни!
smekni.com

Особенности извлечения ванадия из отработанных катализаторов (стр. 3 из 4)

Среди источников вторичного ванадиевого сырья важное место занимают отработанные катализаторы сернокислотного производства. Содержание в них ванадия в десятки раз превосходит его количество в традиционном рудном сырье - титаномагнетитовых рудах. Кроме того, для этого вида сырья не требуются затраты на добычу и его обогащение, что необходимо при переработке минерального сырья. Затраты на утилизацию содержащихся в них полезных компонентов в 2-3 раза меньше затрат на их добычу, обогащение минерального сырья и его последующую переработку. Расход топлива снижается на 10-40%, а удельные капиталовложения – на 30-50%. В целом это огромный резерв повышения эффективности. Использование традиционных технологий добычи и переработки рудного сырья приводит к образованию огромных объемом вторичных ресурсов и отходов производства.

В промышленной практике извлечение редких металлов из ОВК осуществляют как пирометаллургическими (обжиг, хлорирование), так и гидрометаллургическими способами (выщелачивание, химическое осаждение, экстракция) в различных сочетаниях. В данной работе опыты по извлечению соединений ванадия из ОВК проводили по гидрометаллургической схеме.

Характеристика отработанных сернокислотных катализаторов

Как видно, соотношение V2O4 и V2O5 в ОВК ряда заводов различное. Минимальное содержание V2O4 в пробе №3 составляет 29,7 % и доходит до 100 % в пробе № 2. Кроме того, ОВК характеризуются высоким содержанием железа (от 0,8 до 2,9 % в пересчете на Fe2O3).

Авторами были исследованы следующие факторы, оказывающие влияние на степень извлечения ванадия: концентрация реагента, время выщелачивания, температура, оптимальное соотношение Т:Ж, влияние окислителя.

Для исследований была подготовлена измельченная проба № 3 крупностью - 0,01 мм. Навеску пробы обрабатывали различными растворителями при нагревании и тщательном перемешивании. По окончании опыта раствор фильтровали и определяли в нем содержание V2O4 и V2O5, а в отвальных шламах содержание V2O5 .

В качестве растворителей использовали 5 - 25 % NaOH, H2O, аммиачные и сернокислотные растворы. Время выщелачивания составляло 0,5; 1; 2; 5 ч. Соотношение твердой фазы к жидкой составляло Т:Ж-=1:(3-10), температура выщелачивания находилась в пределах 25 - 95 °С.

С целью повышения степени извлечения ванадия из ОВК был исследован процесс окисления четырехвалентного ванадия до пятивалентного состояния. В качестве окислителя использовали 10% раствор Н2О2 . Опытами установлено, что при использовании 10 % Н2О2 степень перевода ванадия в раствор составила 87,2 - 91,3%. Кроме того, были проведены опыты по определению возможности электрохимического способа окисления ванадия.

Предварительные исследования показали, что максимальная степень перевода ванадия в раствор достигается при выщелачивании ОВК растворами серной кислоты. Поэтому дальнейшие опыты по извлечению ванадия проводили 3-7 % H2SO4.

Опытами установлено, что электрохимическое окисление ванадия из 4-х валентного состояния в 5-ти валентное происходит на 95-97 %, При концентрации V2O5 в растворе 6-8 г/л содержание в нем 4-х валентного ванадия составило 0,2-0,4 г/л.

Для отработки параметров новой гидрометаллургической технологии и выдачи исходных данных на проектирование установки по переработке отработанных катализаторов химических производств необходимо выполнить опытно-промышленные испытания на одном из предприятий, на котором применяются катализаторы.

Утилизация токсичных ванадийсодержащих отходов отработанных катализаторов позволит получить в Украине не только собственную ванадиевую продукцию на уровне лучших мировых образцов, но и в значительной мере — решить экологические проблемы.

2.4 Проблемы и способы переработки отработанных ванадиевых катализаторов сернокислотного производства

Ванадиевые катализаторы (ВК) применяются в производстве серной кислоты с 1937 г. Количество их на каждом предприятии определяется производительностью, т. е. на 1 т суточного выпуска кислоты необходимо иметь в контактном аппарате 100 кг катализатора, содержащего 10 % v2 о5 [1].

Разнообразие сырья и усовершенствования технологии производства кислоты и ВК обусловили использование различных типов ВК [2].

Барий-алюминий-ванадиевый катализатор (БАВ) соответствует формуле nV2 O5 · 12SiO2 · 0,5Al2O3 · 2K2O · 3BaO · mKCl и содержит, мас. доля, %: 8V2O5; 11K2O; 35SiO2; 28ВаО; 4Аl2O3·5Сl и 8 прочих соединений.

Сульфованадат-диатомитовая контактная масса (СВД) содержит, мас. доля, %: 6—7 V2O5; 9—10 K2O; 56—62 SiO2; 2—3 CaO; не более 5(А12Оз+ Fе2О3); 18—19 % — сульфаты (в пересчете на SO3).

Сульфованадат на силикагеле (СВС) содержит, мас. доля, %: 8 V2O5; 12K2O; 55—60 SiO2; менее 3А12О3; 10-15— сульфаты (в пересчете на SO3).

Катализаторы ИК 1—6 (Институт катализа) содержат, мас. доля, %: 9V2O5; 30K2SO4; 55-60 SiO2.

Катализатор кипящего слоя (КС) содержит, мас. доля, %: 7V2O5; 7K2O; 4-6 Al2O3; 55-60 SiO2; 16% — сульфаты (в пересчете на SO3). В процессе работы он истирается и уносится в виде пыли.

Срок службы катализаторов составляет 1—2 года на верхних полках контактного аппарата и 4—5 лет — на нижних слоях. Снижение каталитической активности происходит вследствие перехода значительной части ванадия в четырехвалентное состояние и изменения пористой структуры носителя при нарушении теплового режима работы ВК, а также в результате накопления контактных ядов — мышьяка, сульфата железа (II), тумана серной кислоты, потери части ванадия в виде летучих соединений, образующихся с некоторыми компонентами газа при некачественной газоочистке.

Отработанные ванадиевые катализаторы (ОВК) содержат хорошо растворимые высокотоксичные соединения ванадия, серной кислоты, мышьяка, и поэтому их необходимо захоранивать в герметичных могильниках. Состав ОВК зависит от многих факторов типа использованного катализатора, состава перерабатываемого сырья, качества газоочистки, места и длительности пребывания в контактном аппарате, длительности и условий хранения после выгрузки из контактного аппарата. Высокая ценность основных компонентов ОВК бесспорна, а утилизация целесообразна. Отсутствие переработки ОВК наносит большой экологический вред региону, где их зачастую захоранивают с нарушением правил, а то и просто выбрасывают.

Предложено несколько гидрометаллургических технологий переработки ОВК, часть из которых испытана в полупромышленном масштабе и даже построен цех на Украине по технологии, предложенной И. В. Винаровым с сотрудниками [5, 6]. Технология оказалась весьма сложной. Она предусматривает первичное выщелачивание 2М H2 So4 при 105—110°С и три водных промывки нерастворимого носителя. После сушки при 200 °С и прокалки при 600 °С носитель возвращается в производство свежего катализатора. Ванадийсодержащие кислые растворы нейтрализуют аммиаком до рН = 2,8 для проведения цементации мышьяка на медной стружке для его отделения. Очищенный раствор нейтрализуют аммиаком до рН = 8,5, окисляют ванадий пероксидом водорода и при температуре 90 °С осаждают первичный концентрат, который после сушки и прокалки содержит 40 % V2O5. Его кипятят с водой при Ж : Т = 2 в течение 1 ч, дважды промывают и сушат. Готовый продукт содержит 90 % пентоксида ванадия. Такая технология оказалась нерентабельной, хотя и позволяет получать довольно чистые продукты. Образующиеся сульфаты калия и аммония пригодны лишь в качестве удобрений.

Технология предусматривает восстановительное выщелачивание в присутствии металлического железа, осаждение четырехвалентного ванадия щелочью или аммиаком, окисление ванадия пероксидом водорода в пульпе, очистку от примесей, гидролитическое осаждение пентоксида ванадия, его сушку и прокалку. Ванадий теряется на стадии очистки от примесей из-за образования труднорастворимых ванадатов железа. Использование пероксида водорода в качестве окислителя (требуется 2—3-кратный избыток) вряд ли экономически оправданно.

Такое восстановительное выщелачивание позволяет максимально извлечь ванадий из ОВК. В качестве окислителя предлагается использовать газообразный хлор из баллона или барботаж воздухом в щелочной среде (рН=8,5—9,0). Технология оказалась эффективной, извлечение ванадия составило 85 %, а содержание в продукте пентоксида ванадия — 80 % .

Только экономически выгодной технологией можно решить проблему утилизации ОВК. Поэтому рекомендации приближения переработки к месту использования ВК и производства их позволяют резко снизить затраты на сырье, технологическое тепло, водоснабжение и, главное, будут исключены операции по подготовке готовой продукции к перевозке и доставка ее. Наряду с этим предлагаемая технология должна быть надежной, простой, с минимальными затратами на сырье.

Исходя из состава ОВК и учитывая многочисленные исследования по выщелачиванию, в качестве растворителя выбрали воду. При взаимодействии с водой пиросульфата калия образуется серная кислота, которая способствует переходу не только сульфата ванадила, но и частично пятивалентного ванадия. Поскольку пятивалентный ванадий плохо растворим в кислотах, то добавление восстановителя для ванадия повысит степень его извлечения. Наряду с этими процессами сульфат калия переходит в бисульфат, и растворимость его повышается в пять раз. Поэтому первую стадию водного выщелачивания необходимо проводить при таких отношении Ж : Т и температуре, чтобы в раствор перешли максимально ванадий и практически полностью сульфат.

Для более полного отмывания носителя операцию водного выщелачивания повторяют, но фильтрат используют на первом выщелачивании.

Полученный кислый (рН < 1) почти насыщенный сульфатами раствор содержит до 20 г/л ванадия и большую часть (около 80 % находящегося в ОВК) мышьяка. Наиболее рациональный способ окисления ванадия в кислом растворе — это электролиз. Чтобы избежать возможности образования арсина (НзАs), рекомендована оригинальная конструкция трехкамерного электролизера. В нем две катодные камеры, заполненные 5 %-ным раствором сульфата калия, отделены от анодной ионитовыми мембранами типа МА-41. Анодом служит либо платиновая сетка, либо платинированный титан. Катоды из нержавеющей стали.