Смекни!
smekni.com

Погрешности при измерениях (стр. 2 из 3)

2. Систематические, прогрессирующие и случайные погрешности

Систематическими называются погрешности, не изменяющиеся с течением времени или являющиеся не изменяющимися во времени функциями определенных параметров. Основной отличительный признак систематических погрешностей состоит в том, что они могут бить предсказаны и благодаря этому почти полностью устранены введением соответствующих поправок.

Особая опасность постоянных систематических погрешностей заключается в том, что их присутствие чрезвычайно трудно обнаружить, В отличие от случайных, прогрессирующих или являющихся функциями определенных параметров погрешностей постоянные систематические погрешности внешне себя никак не проявляют и могут долгое время оставаться незамеченными. Единственный способ их обнаружения состоит в поверке прибора путем повторной аттестации по образцовым мерам или сигналам,

Примером систематических погрешностей второго вида служит большинство дополнительных погрешностей, являющихся не изменяющимися во времени функциями вызывающих их влияющих величин (температур, частот, напряжения и т.п.). Эти погрешности благодаря постоянству во времени функций влияния также могут быть предсказаны и скорректированы введением дополнительных корректирующих преобразователей воспринимающих влияющую величину и вводящих соответствующую поправку в результат измерения.

Прогрессирующими (или дрейфовыми) называются непредсказуемые погрешности, медленно изменяющиеся во времени. Эти погрешности, как правило, вызываются процессами старения тех или иных деталей аппаратуры (разрядкой источников питания, старением резисторов, конденсаторов, деформацией механических деталей, усадкой бумажной ленты в самопишущих приборах и т.п.). Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы введением поправки лишь в данный момент времени, а далее вновь непредсказуемо возрастают. Поэтому в отличие от систематических погрешностей» которые могут быть скорректированы поправкой, найденной один раз на весь срок службы прибора, прогрессирующие погрешности требуют непрерывного повторения коррекции и тем более частой, чем меньше должно быть их остаточное значение. Другая особенность прогрессирующих погрешностей состоит в том, что их изменение во времени представляет собой нестационарный случайный процесс и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с оговорками.

Случайными погрешностями называют непредсказуемые ни по знаку, ни по размеру (либо недостаточно изученные) погрешности. Они определяются совокупностью причин, трудно поддающихся анализу. Присутствие случайных погрешностей (в отличие от систематических) легко обнаруживается при повторных измерениях в виде некоторого разброса получаемых результатов. Таким образом, главной отличительной чертой случайных погрешностей является их непредсказуемость от одного отсчета к другому. Поэтому описание случайных погрешностей может быть осуществлено только на основе теории вероятностей в математической статистики.

Тем не менее, так как большинство составляющих погрешностей средств и результатов измерений являются случайными погрешностями, то единственно возможным разработанным способом их описания является использование положений теории вероятностей и ее дальнейшего развития применительно к процессам передачи информации б виде теории информации, а для обработки получаемых экспериментальных данных, содержащих случайные погрешности, — методов математической статистики. Поэтому именно эта группа фундаментальных разделов математики является основой для развития современной теории оценок погрешностей средств, процессов и результатов измерений.

Примерами систематических аддитивных погрешностей являются погрешности от постороннего груза на чашке весов, от неточной установки прибора на нуль перед измерением, от термо-ЭДС в цепях постоянного тока и т. п. Для устранения таких погрешностей во многих СИ предусмотрено механическое или электрическое устройство для установки нуля (корректор нуля).

Примерами случайных аддитивных погрешностей являются погрешность от наводки переменной ЭДС на вход прибора, погрешности от тепловых шумов, от трения в опорах подвижной части измерительного механизма, от ненадежного контакта при измерении сопротивления, погрешность от воздействия порога строгания приборов с ручным или автоматическим уравновешиванием и т. п.

Причинами возникновения мультипликативных погрешностей могут быть:

· изменение коэффициента усиления усилителя;

· измерение жесткости мембраны датчика манометра или пружинки прибора;

· изменение опорного напряжения вцифровом вольтметре и т.д.

3. Изменение погрешности средств измерений во время их эксплуатации

Как бы тщательно ни был изготовлен и отрегулирован прибор к моменту выпуска его па приборостроительном заводе, с течением времени в элементах схемы и механизме неизбежно протекают разнообразные процессы старения к погрешность его неуклонно возрастает. Поэтому нормирование гарантированных в паспорте СИ пределов допускаемой погрешности производится заводом-изготовителем с 1,25— 2,5-кратным запасом на старение. Такое превышение пределов допускаемой погрешности над фактическим значением погрешности СИ в момент их выпуска с производства или из ремонта является по существу единственным практическим способом обеспечения долговременной метрологической стабильности средств измерений.

Это обстоятельство должно быть четко известно потребителю средств измерений, так как его приходится принимать во внимание при решении многих вопросов организации процессов измерений, поддержания СИ в работоспособном состоянии, оценки допускаемых при измерении погрешностей и т. д,

У нового, только что изготовленного прибора полоса его погрешностей располагается симметрично относительно нуля в границах ±0,09%. Систематическая погрешность отсутствует, так как она устранена благодаря только что проведенной на заводе регулировке или градуировке шкалы прибора, а случайная погрешность составляет одну пятую часть от нормированного предела.

Изменение погрешности с возрастом прибора, наблюдаемое при последующих ежегодных поверках, происходит в виде прогрессирующего смещения и поворота полосы погрешностей, т. е. в виде непрерывного возрастания систематической составляющей погрешности прибора, в то время как размер случайной составляющей определяется шириной полосы погрешностей и остается практически неизменным.

Аналогичный характер имеет и процесс накопления прогрессирующей погрешности с возрастом цифровых приборов и измерительных каналов измерительных информационных систем (ИИС) или измерительно-вычислительных комплексов (ИВК). Как правило, ИИС и ИВК выполняются достаточно высококачественно, однако накопление прогрессирующей погрешности приводит, как и у других СИ к смещению и повороту их полосы погрешностей, т. е, к постепенному расходованию запаса погрешности, созданного при изготовлении.

Таким образом, характер проявления прогрессирующей погрешности с возрастом СИ является единым для всех СИ и пользователь средств измерений не может его игнорировать.

Возрастающая со временем прогрессирующая погрешность СИ для каждого конкретного результата измерения является систематической. На протяжении ремонтного интервала она возрастает.

Индивидуальная оценка погрешностей всех результатов прямые однократных измерений особенно важна при автоматизации измерений, когда эти результаты без участия экспериментатора вводятся в ЭВМ и используются для дальнейших вычислений, При ручных измерениях экспериментатор интуитивно оценивает качество получаемых данных (по наблюдаемому разбросу по тому, получен ли результат вконце шкалы прибора или на первых ее отметках, и другим признакам). При автоматических измерениях такой субъективный контроль отсутствует.

Однако использование ИВК открывает возможность автоматического вычисления погрешности для каждого отдельного однократного измерения по приведенным выше простейшим формулам. Благодаря простота этих вычислений они занимают очень малую часть машинного времени, а исходные данные (метрологические характеристики измерительных каналов) требуют ничтожную часть памяти ЭВМ. Итог же получается очень эффективным — каждой выводимый на печать результат измерений в соседнем столице таблицы снабжается указанием погрешности с которой он получен, или границами интервала его неопределенности.

Сообщаемый потребителю интервал неопределенности каждого из полученных результатов оперативно информирует его о качестве измерений, хотя, строго говоря, вычисленная по нормируемым метрологическим характеристикам СИ погрешность результата может быть как больше, так и меньше ее действительного значения.

При использовании новых, только что изготовленных СИ в зависимости от размера запаса на старение вычисленная погрешность может быть в 2,5—1,25 раза больше ее фактического значения и приближается к нему только за конце межремонтного интервала. А меньше может быть потому, что погрешность результата измерения определяется не столько инструментальной погрешностью СИ, но и методическими погрешностями, допускаемыми самим экспериментатором. Анализ размера методических погрешностей лежит на ответственности экспериментатора.

Исключение прогрессирующих погрешностей. Скорость изменения во времени прогрессирующих погрешностей носит случайный характер. Поэтому методом обнаружения их накопившихся значений является поверка приборов или измерительных каналов ИИС по образцовым сигналам и мерам. При этом исключение прогрессирующих погрешностей может выполняться как вручную, так и автоматически.