Смекни!
smekni.com

Элементы конструирования печатных плат (стр. 6 из 8)

В свою очередь, увеличение степени интеграции вызывает рост числа входных контактов микросхем п, подчиняющийся соотношению Рента:

где к – среднее число межсоединений, приходящееся на один логический элемент в ИС, например, для двухвходового вентиля к = 3…4; ^-показатель Рента, зависящий от структуры логических схем. Например, для произвольной логики высокопроизводительных процессоров р = 0,5…0,75, для микропроцессорной логики р< 0,5.

Число межсоединений ЛГ определяется суммарным числом выводов п всех М микросхем, устанавливаемых на печатную плату:

где г – коэффициент разветвления соединений, зависящий от числа нагрузок т в цепях межэлементных связей: г=т/, так что 0,5 <г<1.

Суммарная длина соединений в печатных платах 2? определяется числом соединений N и средней дайной одного соединения 1с:

Статистические исследования показывают, что при произвольном размещении микросхем на плате средняя длина одного соединения определяется размером платы:


где i – коэффициент использования монтажного поля платы выводами микросхем.

Положив / = 0,5, оценим суммарную длину соединений в платах

Отношения к площади платы L2 суммарного числа выводов микросхем Мп и суммарной длины соединений Л в ней будем называть соответственно плотностью монтажа и плотностью соединений:

Используя и, получаем соотношение между плотностями соединений и монтажа

Таким образом, увеличение плотности размещения монтажных элементов и линейных размеров плат требует пропорционального увеличения плотности соединений. С другой стороны, плотность соединений определяется плотностью трассировки, т.е. числом проводников п, прокладываемых между отверстиями и коэффициентом использования трасс •, а в МПП – еще и числом сигнальных слоев т:

с


где Т – шаг сквозных отверстий, между которыми трассируется п проводников.

В односторонних печатных платах единственный слой проводящего рисунка используется для размещения монтажного поля, цепей питания и межсхемных соединений. Поэтому на этих платах невозможно удовлетворить противоречивые требования увеличения плотности монтажа и плотности соединений. Частично эти противоречия разрешаются в двусторонних печатных платах. И только применение МПП позволяет обеспечить специализацию слоев. МПП имеют наружные монтажные слои, которых, естественно, не может быть больше двух, тс сигнальных слоев с ортогональным принципом трассировки проводников в преимущественных направлениях А'или Y слои тэ с цепями земли и питания, выполняющие одновременно роль электрических экранов, заземленных по высокой частоте. Экранные слои размещаются между сигнальными, поэтому

Коэффициент использования трасс принимает значения в пределах 0 <з< 1 в зависимости от степени взаимной независимости направлений трассировки соединений. Значения ■ приближаются к единице с увеличением числа переходных отверстий, создающих возможность обхода пересечений трасс. В МПП особенно эффективны межслойные переходы в шаге трасс двусторонних внутренних слоев со строго ортогональной трассировкой.

Таблица 2.9. Коэффициент использования трассировочного пространства

п ч> Внутренние слои без межслоиных переходов Двусторонние слои с межслойными переходами в шаге трасс
1 0,6 0,9
2 0,52 0,82
3 0,45 0,80
4 0,38 0,75

В табл. 2.9 даны значения коэффициента з для сигнальных слоев МПП с различным числом трасс проводников птр между сквозными отверстиями. Из этих данных видно, что без межслоиных переходов увеличение плотности трасс не дает пропорционального эффекта.

Дефицит межслойных переходов проявляется в досадном для технологов явлении: первая пара слоев заполнена проводниками на 80%, вторая только на 30%, третья на 7% и четвертая на 2%. Т.е. усилия производства в увеличении плотности трасс и слойности МПП не вознаграждаются соответствующим увеличением плотности межсоединений при дефиците межслойных соединений. Гораздо эффективнее увеличивать количество межслойных соединений.


5. Быстродействие

Производительность, на которую рассчитана система, является ее важным техническим параметром, который следует учитывать при выборе принципа межсоединений. Многие цифровые системы работают на тактовых частотах, приближающихся к 100 МГц, а другие уже давно перешагнули этот порог. Повышение быстродействия систем требует от разработчиков правильного выбора структур межсоединений в печатных платах и материалов, используемых в качестве подложки печатных плат.

5.1 Задержка сигналов

Скорость распространения сигнала обратно пропорциональна квадратному корню диэлектрической проницаемости материала подложки. Время распространения сигнала, так называемая конструктивная задержка, прямо пропорционально длине проводников и должно быть как можно меньше, чтобы оптимально обеспечить электрическую производительность системы. Задержка в линиях связи:

где г – конструктивная задержка времени распространения сигнала на единицу длины, L и С – индуктивность и емкость на единицу длины, тд – задержка на единицу длины при передаче сигналов в вакууме, е – диэлектрическая проницаемость среды, в которой распространяется сигнал, /и – магнитная проницаемость среды. Поскольку в цепях передачи сигналов используются в большинстве случаев немагнитные материалы, скорость распространения сигналов зависит главным образом от относительной диэлектрической проницаемости, значения которой у современных диэлектриков печатных плат лежат в диапазоне 2,5…6. Следовательно, задержка сигналов в линии может превышать 6 нс/м.

Емкостные нагрузки, создающиеся ответвлением трасс, вносят дополнительные задержки сигналов. Поэтому соединения нескольких приемников сигналов, как правило, выполняют не разветвлениями, а последовательным обходом, чтобы предотвратить это рассогласование.

Использование диэлектриков с улучшенными характеристиками дает незначительный выигрыш в задержке. Поэтому в общем случае конструктивная задержка сигналов зависит от длины сигнальных трасс.

5.2 Погонная емкость

Емкость проводников, отнесенных к единице длины:

Для проводников, располагаемых в одной плоскости:

где В-ширина проводника, см; Н – толщина межслойной изоляции, см; S – расстояние между краями проводников, см.

Если толщина печатной платы составляет больше 10% ширины проводника, необходимо вводить поправку на краевой эффект добавлением к вычисленному значению погонной емкости значение краевой емкости, значение которой может составлять до 20%.


5.3 Волновое сопротивление

Для систем, работающих при частоте выше 25 МГц, межсоединения должны иметь такие характеристики линий передачи, чтобы потери сигналов и искажения были минимальны. Правильный расчет линий передачи требует внимательного учета расстояния между проводниками и экранами и соблюдения точности их размеров, чтобы предотвратить рассогласование линий передач и в, конечном итоге, обеспечить быстродействие системы. Существует два основных типа линий передачи:

• открытые линии, когда сигнальная трасса находится над единственным экраном;

• закрытые линии, когда сигнальные трассы располагаются между экранами.


И та и другая линии могут быть реализованы только в многослойных структурах, и уже только это определяет необходимость их использования.

Волновое сопротивление линии (Ом) рассчитывается, исходя из следующих выражений:

для открытой линии:

где В-ширина проводника, см; Н – толщина межслойной изоляции, см; Л – толщина проводника, см; кс и кн – коэффициенты, учитывающие особенности конструкции экранов открытых и закрытых линий; q – коэффициент, учитывающий эксцентриситет положения печатного проводника относительно экранных слоев в закрытых линиях.