Смекни!
smekni.com

Элементы конструирования печатных плат (стр. 7 из 8)

Задача согласования линий связи решается технологическим обеспечением воспроизведения заданного значения их волнового сопротивления, т.е. нормированием всех дестабилизирующих факторов, свойственных производству печатных плат. По результатам анализа влияния этих факторов можно сделать заключение о приемлемости дисперсий волнового сопротивления печатных проводников, реализуемых в производстве печатных плат, или принять решение о необходимости дополнительного контроля всех или отдельных конструктивных параметров печатных плат, оказывающих наибольшее влияние на разброс волнового сопротивления, если эта величина больше приемлемого допуска. По результатам дисперсионного анализа реального производства можно сделать заключение, что при соблюдении обычных норм контроля за технологическим процессом обеспечивается погрешность воспроизведения волнового сопротивления линий связи в МПП в пределах + 15%, при управлении процессом воспроизводства ширины проводников и толщины межслойной изоляции – 8… 10%.


6. Энергопотребление

Увеличение производительности электронных устройств и интеграции микросхем приводит к соответствующему увеличению энергопотребления. Некоторые микросхемы потребляют до 30 Вт. Такая мощность потребления в сочетании с низким напряжением питания делает узлы и блоки электронных систем чувствительными к, так называемым, перекосам напряжения в пределах одной платы. Это обуславливает задачу обеспечения равномерного распределения питания и заземления в платах за счет низкого сопротивления этих цепей, работающих при напряжениях 5; 3,3; 2,8 В.

6.1 Цепи питания

Очевидно, что цепи питания должны иметь низкоомное сопротивление, чтобы распределение потенциалов было равномерным по всей плоскости платы. В некоторых случаях требуются даже отдельные навесные шины, чтобы избежать заметного падения напряжения питания в схемах с мощным энергопотреблением.

Но кроме низкого сопротивления от цепей питания и заземления требуется еще и низкая индуктивность для ослабления импульсных помех, определяемых скоростью переключения в схемах с высоким быстродействием. В двусторонних платах цепи питания неизбежно имеют большой контур потокосцепления, а значит и большую индуктивность.

Наиболее удачно эти проблемы решаются в МПП, изготавливаемых методом металлизации сквозных отверстий, где есть возможность выделить для цепей земли и питания отдельные слои, играющие одновременно роль электрических экранов, заземленных по высокой частоте. Вместе с тем, экраны, выполненные в виде параллельных металлических плоскостей, имеют хорошую развязывающую емкость и низкую индуктивность за счет ничтожно малой площади контура, сосредоточенного между слоями земли и питания.

6.2 Сопротивление цепей

Расчет сопротивления печатных проводников при проектировании печатных плат требуется в основном для того, чтобы избежать недопустимо большого падения напряжения в сигнальных и потенциальных цепях, которое может приводить к потере мощности сигнала и к неравномерному распределению напряжения питания по рабочему полю платы, перегреву слабых элементов соединений. При тестировании печатных плат омическое сопротивление элементов соединений может служить критерием их качества.

Расчет сопротивления элементов соединений производится, исходя из общеизвестных соотношений. Применительно к плоским проводникам печатных плат и размерностям, используемым в технике печатного монтажа, можно использовать соотношение:

г= 17,5/5/1,

где г – погонное сопротивление, мОм/мм; В-ширина проводника, мм; А – толщина фольги, мкм.

Таблица 2.10 Реальные значения металлической толщины проводников

Масса единицы площади Номинальная толщина, Толщина на внутренних слоях (без металлизации). Толщина на внешних слоях после металлизации.
Унция/ кв. фут г/ кв. м мкм мкм мкм
0,5 OZ 152,5 17,2 12 45
1 OZ 305 34,3 28 60
2oz 610 68,6 64 100
3 oz 915 103,0 98 130
4 oz 1220 137,0 130 170

Исследования показывают, что в ряде случаев результаты расчетов сопротивлений элементов соединений по их геометрии и стандартным удельным характеристикам материалов не полностью соответствуют реальным значениям. Это объясняется наличием множества побочных факторов. Основными из них являются значительные разбросы геометрических характеристик элементов соединений, отличие удельных сопротивлений химической и гальванической металлизации в отверстиях и на проводниках от известного значения для натуральной металлической меди, Омсм: чистая отожженная медь – 1,72–106, медная фольга – 1,75–106, медное гальванопокрытие – -106, химически осажденная медь – -106. Поэтому поиски точных расчетных соотношений для определения активного сопротивления элементов соединений печатных плат не оправданы. В табл. 2.10 показано, например, как отличается толщина реальных проводников от номинальных значений толщины фольги.

6.3 Токонесущая способность проводников

Для надежной работы необходимо, чтобы нагрев проводников под действием тока не приводил к физико-химическим изменениям, как в элементах соединений, так и в окружающем их диэлектрике. Сами печатные проводники, благодаря своей плоской форме, хорошо отдают тепло и допускают большие плотности тока без каких-либо для них последствий. Поэтому площади поперечного сечения проводников определяются, в первую очередь, необходимостью обеспечить низкое сопротивление цепей. И если это обеспечено, токонесущая способность проводников будет обеспечена с большим запасом. Чаще всего с ограниченной токонесущей способностью проводников приходится считаться в точках ввода питания в плату, откуда большие токи распределяются по соответствующим цепям. Если этих точек мало, и они не распределены по периметру платы, могут возникнуть локальные температурные перегрузки, вызывающие термодеструкцию диэлектрика. С другой стороны, большие сечения проводников в местах токоподвода затрудняют пайку. Поэтому лучше иметь много маломощных вводов, чем один мощный.

О токонесущей способности проводников чаще приходится говорить при тестировании плат когда для диагностики надежности используют нагрузку тестируемых цепей большими токами.

Чтобы учесть все факторы, влияющие на кинетику нагрева проводников током, представим физическую модель, условно показанную на рис. 2.14.

Условно выделенный элемент проводника с массой т и удельной теплоемкостью с имеет в исходном состоянии при температуре окружающей среды Тв сопротивление го. При прохождении через проводник тока / на сопротивлении го выделяется мощность Р. Температура проводника повышается на Т. Условия теплоотдачи проводника определяется тепловым сопротивлением F. Нагрев проводника вызывает дополнительное увеличение сопротивления, соответствующее температурному коэффициенту сопротивления.

Взаимосвязи термодинамического процесса нагрева проводника можно описать системой уравнений:

мощность, выделяемая на сопротивлении проводника R, зависящим от температуры перегрева T относительно первоначальной температуры окружающей среды; T = T – То – перегрев проводника относительно первоначальной температуры окружающей среды То\ T = Q/c – температура проводника, где

– количество тепла, накапливаемое в элементе проводника;

P = P – Р – разность между выделяемой P и отводимой Р 0) мощностями, обуславливающая изменение температуры элемента проводника T\ Р = T/F – мощность, отводимая от элемента проводника через тепловое сопротивление F.

Уравнение, связывающее выделяемую мощность с накапливаемой в теплоемкости элемента и отводимой через тепловое сопротивление, можно представить следующим образом:

Решение дифференциального уравнения имеет вид:

где Fm – тепловое сопротивление в установившемся режиме; г – постоянная времени термодинамического процесса нагрева, равная

Начальная скорость нарастания температуры


т.е. в начальной стадии нагрев проводника током – процесс адиабатический, не зависящий от характеристик внешней среды, окружающей проводник. Характер дальнейшего развития процесса нагрева зависит от знака корня уравнения р = PRgFa: при р>0 процесс сводится к установившемуся значению, а изменение температуры во времени

при р<0 температура проводника неограниченно растет, пока не будет выключен ток или не перегорит проводник; при р = 0 процесс нагрева характеризуется линейным во времени возрастанием температуры:

Линейный режим является граничным между устойчивым и неустойчивым режимами нагрева. Поэтому он определяет критическое значение тока: